首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We deposited silicon carbide (SiC) by the chemical vapor deposition (CVD) method using the inert gases Ar and He. It was confirmed that SiC deposited with inert gases had a porous microstructure and high carbon content. We also studied the thermoelectric properties. SiC deposited with He gas had lower electrical and thermal conductivity compared with SiC deposited with Ar gas. Both samples using Ar and He exhibited a negative Seebeck coefficient, indicating n-type semiconductor behavior. The calculated figure of merit (Z) of SiC deposited with inert gases was improved compared with SiC deposited with H2 or N2 gas. The value for SiC deposited with He was higher than that for SiC deposited with Ar. The thermoelectric properties of porous silicon carbide deposited with inert gases were also compared with those of silicon carbide deposited with hydrogen or nitrogen gas.  相似文献   

2.
Sensors based on carbon-black-filled bisphenol A-type epoxy conductive polymeric composites (CPCs) have been prepared and applied to monitor thermal oxidation aging of polymeric materials. Thermogravimetric analysis (TGA) is applied to characterize weight loss of epoxy resin in the aging process. By using a mathematical model based on the Boltzmann equation, a relationship between the electrical resistivity of the sensors based on epoxy/carbon black composites and aging time is established, making it possible to monitor and estimate the aging status of polymeric components in situ based on a fast and convenient electrical resistance measurement.  相似文献   

3.
Aluminum nitride particles (size 4 [μa.) and silicon carbide whiskers (diameter 1.4 (μm, length 18.6 μm) were used as fillers in a polyimide polymer matrix. Aluminum nitride in the amount of 50 vol.% decreased the coefficient of thermal expansion from 81 x 10-6 to 11.3 x lO-6/dgC and increased the thermal conductivity from 0.128 up to 1.76 W/(m.°C). Silicon carbide in the amount of 50 vol.% decreased the coefficient of thermal expansion from 81 x 10-6 to 18.1 x 10-6°C and increased the thermal conductivity from 0.128 up to 1.26 W/(m.°C). When both SiC whiskers and A1N particles in the 1:3 volume ratio and in the total amount of 50 vol.% were added to the polymer, the thermal conductivity increased from 0.128 to 2.23 W/(m.°C). These effects are attributed to the large aspect ratio of the SiC whiskers, which tended to bridge adjacent A1N particles and also act as a reinforcement to improve the toughness of the composite. On the other hand, the SiC whiskers in the mixed fillers also enhanced the toughness of the composites. The composite containing 50 vol.% A1N particles alone had a lower dielectric constant (7.1 at 100 kHz) than the composite containing 50 vol.% SiC whiskers alone (15.9 at 100 kHz). The composites containing a mixture of A1N particles and SiC whiskers at different ratios and in the total amount of 50 vol.% had lower values of the dielectric constant than the composite containing SiC whiskers alone.  相似文献   

4.
Combining conductive micro and nanofillers is a new way to improve electrical conductivity. Micrometric silver flakes and nanometric carbon nanotubes (CNTs) exhibit high electrical conductivity. A new type of hybrid conductive adhesives filled with silver flakes and carbon nanotubes (DWCNTs or MWCNTs) were investigated. High electrical conductivity is measured as well as improved mechanical properties at room temperature. Small agglomerates and free MWCNTs dispersed in the silver/epoxy composites improve the electrical conductivity and a synergistic effect between MWCNTs and micro sized silver flakes is observed in hybrid composites. Glassy and rubbery storage moduli of the hybrid composites increase with increasing silver loading at fixed CNTs volume fraction. High value of the storage modulus, measured in DWCNTs/μAg hybrid composites at rubbery state, is caused by strong agglomeration of DWCNTs bundles. The electrical and mechanical properties are consistent with the morphologies of the hybrid composites characterized by SEM.  相似文献   

5.
Owing to the conductivity modulation of silicon carbide (SiC) bipolar devices,n-channel insulated gate bipolar transistors (n-IGBTs) have a significant advantage over metal oxide semiconductor field effect transistors (MOSFETs) in ultra high voltage (UHV) applications.In this paper,backside grinding and laser annealing process were carried out to fabricate 4H-SiC n-IGBTs.The thickness of a drift layer was 120 μm,which was designed for a blocking voltage of 13 kV.The n-IGBTs carried a collector current density of 24 A/cm2 at a power dissipation of 300 W/cm2 when the gate voltage was 20 V,with a differential specific on-resistance of 140 mΩ·cm2.  相似文献   

6.
Issues related to the production of radiation defects in silicon carbide of various polytypes and with differing conductivity types and concentrations of charge carriers as a result of irradiation with high-energy particles in a wide range of their energies and masses (from electrons to heavy Bi ions) are considered. The effect of irradiation with high-energy particles on the optical and electrical characteristics of the devices based on SiC are also considered, including the devices that operate as detectors of nuclear radiation. Systematic trends (common to other semiconductors and characteristic of SiC) in the radiation-defect formation in SiC are established. The high radiation resistance of SiC is verified; it is shown that this radiation resistance can be increased at increased energies of incident particles and at higher temperatures of operation.  相似文献   

7.
采用模压成型和真空压力浸渗工艺制备了高体积分数SiC增强Al基复合材料(AlSiC)。物相和显微结构研究结果表明,此种方法制备的AlSiC复合材料,组织致密且大小两种粒径的SiC颗粒均匀分布于Al基质中,界面结合强度高;SiC增强颗粒与Al基质界面反应控制良好,未出现Al4C3等脆性相。在此基础上,研究了基体金属、粘结剂用量、粗细SiC颗粒比例对复合材料热导率的影响。结果表明,以1A90高纯铝为基体的复合材料的热导率高于以6061铝合金为基体的复合材料的热导率;粘结剂用量减少时,复合材料热导率提高;当SiC体积分数一定时,AlSiC复合材料的热导率随增强体中粗颗粒SiC比例增大而增大。  相似文献   

8.
Thermal conductivity is estimated using a 3-omega technique for an individual bismuth nanowire (diameter: 595 nm, length: 2.24 mm) covered with a quartz template. To evaluate the thermal conductivity of the nanowire, we propose a simple model of thermal and electrical transfer functions for the nanowire that assumes a linear combination of that of the line heater on the substrate and a suspended wire. Since the out-of-phase third-harmonic component of the electrical transfer function depends only on the thermal diffusivity of the nanowire, measurement of the frequency dependence is carried out. A distinct extreme value of the frequency has been observed, as expected, and estimation of the thermal conductivity of the nanowire covered with the quartz is attempted. Although the thermal conductivity at 300 K is 9.8 W/mK, somewhat smaller than that of bulk bismuth, the temperature dependence of the thermal conductivity is quite different from that of bulk bismuth, and decreased linearly with decreasing temperature. In particular, this shows that the thermal conductivity obtained is suppressed in the low-temperature region by phonon confinement in the nanowire.  相似文献   

9.
We report the chemical exfoliation of grapheneoxide from graphite and its subsequent reduction to graphene nanosheets (GN) to obtain highly conducting composites of graphene sheets in a polymer matrix. The effect of using graphite nanoparticles or flakes as precursors, and different drying methods, was investigated to obtain multilayer graphene sheets of atomically controlled thickness, which was essential to optimizing their dispersion in a polystyrene (PS) polymer matrix. In situ emulsion polymerization of the styrene monomer in the presence of GN was performed to obtain thin composite films with highly uniform dispersion and fewer graphene layers when GN were obtained from graphite flakes then freeze drying. The highest electrical conductivity of PS–GN composites was ~0.01 S/m for a graphene filling fraction of 2%. The piezoresistance of the PS–GN composites was evaluated and used in pressure sensor arrays with pressure field imaging capability.  相似文献   

10.
SiC in Sweden     
《III》1995,8(1):34-36
The last few years have seen a large co-ordinated research effort within the field of silicon carbide (SiC) in Sweden. The effort involves companies of different sizes, universities and governmental research funding agencies. Among the results that have come out of the programme, one could mention a 4.5 kV rectifier with excellent properties in forward and reverse direction.  相似文献   

11.
This paper reports the study of the fabrication and characterization results of 10-kilo-volt (kV) 4H-SiC merged PiN/Schottky rectifiers. A metal contact process was developed to make the Schottky contact on n-type SiC and ohmic contact on p-type SiC at the same time. The diodes with different Schottky contact width were fabricated and characterized for comparison. With the improvement quality of the Schottky contact and the passivation layer, the devices show low leakage current up to 10 kV. The on-state characteristics from room temperature to elevated temperature (423 K) were demonstrated and compared between structures with different Schottky contact width.  相似文献   

12.
SiC microwave power technologies   总被引:3,自引:0,他引:3  
Two SiC transistors that are investigated for microwave power applications are the 4H-SiC static induction transistor (SIT) and the 4H-SiC metal-semiconductor field-effect transistor (MESFET). Ultrahigh frequency 4H-SiC SITs have demonstrated record-breaking pulsed power per package (900 W) with excellent associated power-added efficiency (PAE) of 78%. S band 4H-SiC MESFETs have shown a record power-density of 5.6 W/mm and 36% PAE, as well as 80 W continuous-wave (CW) power (1.6 W/mm), with an associated PAE of 38%. X-band MESFET power density of 4.3 W/mm was obtained for exploratory CW devices. These performance gains are afforded by the advantageous material properties of silicon carbide. SiC SIT technology offers many military system advantages including lower cost, lower weight, higher power and high temperature of operation and higher efficiency transmitters with minimal cooling requirements. SiC RF MESFET's and circuits are candidates for use in efficient linear transmitters for commercial and military communications.  相似文献   

13.
选用SiO_2、Al_2O_3、Si_3N_4三种陶瓷颗粒的复合填充环氧模塑料(EMC),研究了不同填料种类、含量对EMC导热系数、热膨胀系数(CTE)、介电常数等性能的影响随着填料百分含量的增加,EMC的热导率、介电常数也随之增加,而其热膨胀系数显著下降相同体积百分含量下,Al_2O_3、Si_3N_4复合体系EMC热导率和介电常数高于SiO_2、Si_3N_4复合体系,而其热膨胀系数比后者低。百分含量为60%时,前者热导率达到2.254 W(m·K)~(-1)、后者达到2.04w(m·K)~(-1)。百分含量为65%时,其CTE分别为1.493×10~(-5)K~(-1)、1.643×10~(-5)K~(-1),同时两体系复合材料的介电常数可以维持在较低水平  相似文献   

14.
Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (~1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.  相似文献   

15.
Silicon offers multiple advantages to power circuit designers, but at the same time suffers from limitations that are inherent to silicon material properties, such as low bandgap energy, low thermal conductivity, and switching frequency limitations. Wide bandgap semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), provide larger bandgaps, higher breakdown electric field, and higher thermal conductivity. Power semiconductor devices made with SiC and GaN are capable of higher blocking voltages, higher switching frequencies, and higher junction temperatures than silicon devices. SiC is by far the most advanced material and, hence, is the subject of attention from power electronics and systems designers. This paper looks at the benefits of using SiC in power electronics applications, reviews the current state of the art, and shows how SiC can be a strong and viable candidate for future power electronics and systems applications.  相似文献   

16.
碳化硅(SiC)PiN二极管是应用在高压大功率整流领域中的一种重要的功率二极管。受SiC外延材料的载流子寿命限制以及常规SiC PiN二极管较低的阳极注入效率的影响,SiC PiN二极管的正向导通性能较差,这极大限制了其在高压大电流领域的应用。文章提出了一种带P型埋层的4H-SiC PiN二极管,较常规SiC PiN二极管增强了阳极区的少子注入效率,降低了器件的导通电阻,增大了正向电流。仿真结果表明,当正向偏压为5 V时,引入P型埋层的SiC PiN二极管的正向电流密度比常规SiC PiN二极管提升了52.8%。  相似文献   

17.
The physical and electrical properties of heavily doped silicon (5×1019 cm−3) deposited by molecular beam epitaxy (MBE) on 4H-SiC are investigated in this paper. Silicon layers on silicon carbide have a broad number of potential applications including device fabrication or passivation when oxidised. In particular, Si/SiC contacts present several atractive material advantages for the semiconductor industry and especially for SiC processing procedures for avoiding stages such as high temperature contact annealing or SiC etching. Si films of 100 nm thickness have been grown using a MBE system after different cleaning procedures on n-type (0 0 0 1) Si face 8° off 4H-SiC substrates. Isotype (n–n) and an-isotype (p–n) devices were fabricated at both 500 and 900 °C using antimonium (Sb) or boron (B), respectively. X-ray diffraction analysis (XRD) and scanning electronic mircorscope (SEM) have been used to investigate the crystal composition and morphology of the deposited layers. The electrical mesurements were performed to determine the rectifiying contact characteristics and band offsets.  相似文献   

18.
We have applied a free electron laser (FEL) to crystallize amorphous silicon carbide (a-SiC) and to remove the damage and activate the dopant of a damaged layer of nitrogen implanted cubic silicon carbide (3C-SiC) films at room temperature. The FEL has two main characteristics, wavelength tunability and ultrashort-pulse operation (~10 ps) with intense peak power (~MW). The wave-length was selected at the energy of the Si-C stretch mode in order to excite the lattice vibration directly. We observed the crystallization of a-SiC occurs at room temperature when irradiation with a 12.6 μm FEL. The present results indicate that FEL annealing (12.6 μm: transverse optical mode, 10.3 μm: longitudinal optical mode) is effective for recrystallization and activation of an ion-implanted SiC films.  相似文献   

19.
Silicon carbide high-power devices   总被引:2,自引:0,他引:2  
In recent years, silicon carbide has received increased attention because of its potential for high-power devices. The unique material properties of SiC, high electric breakdown field, high saturated electron drift velocity, and high thermal conductivity are what give this material its tremendous potential in the power device arena. 4H-SiC Schottky barrier diodes (1400 V) with forward current densities over 700 A/cm2 at 2 V have been demonstrated. Packaged SITs have produced 57 W of output power at 500 MHz, SiC UMOSFETs (1200 V) are projected to have 15 times the current density of Si IGBTs (1200 V). Submicron gate length 4H-SiC MESFETs have achieved fmax=32 GHz, fT=14.0 GHz, and power density=2.8 W/mm @ 1.8 GHz. The performances of a wide variety of SiC devices are compared to that of similar Si and GaAs devices and to theoretically expected results  相似文献   

20.
B4C1?x –TiB2 composites were prepared by in situ reactive spark plasma sintering of B4C with addition of nano-TiO2 powder. The effect of TiO2 addition on the sinterability of boron carbide was studied. The composition and the microstructure of the dense composites are characterized by means of x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). The studies show that the composites contain boron carbide and TiB2 phases with a homogeneous structure. In addition, the correlation between the composition and the thermoelectric properties was investigated. The electrical conductivity of the composite increased with increasing addition of TiO2, and the Seebeck coefficient decreased with TiO2 addition. The percolation threshold ø c for TiB2 in the B4C1?x –TiB2 system was found to be in the range of 0.139 to 0.189. The thermal conductivity was reduced in the whole measuring temperature range from 50°C to 800°C below ø c. Accordingly, a significant enhancement in the dimensionless figure of merit ZT of the composites was achieved compared with that of boron carbide without TiO2 addition, with ZT achieving its maximum value at 10 wt.% TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号