首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results of experimental studies of the time dynamics of photoexcited charge carriers in In0.53Ga0.47As/In0.52Al0.48As superlattices grown by molecular-beam epitaxy on a GaAs substrate with a metamorphic buffer are reported. On the basis of the results of the numerical simulation of band diagrams, the optimal thickness of the In0.52Al0.48As barrier layer (4 nm) is chosen. At this thickness, the electron wave functions in In0.53Ga0.47As substantially overlap the In0.52Al0.48As barriers. This makes it possible to attain a short lifetime of photoexcited charge carriers (τ ~ 3.4 ps) at the wavelength λ = 800 nm and the pumping power 50 mW without doping of the In0.53Ga0.47As layer with beryllium. It is shown that an increase in the wavelength to λ = 930 nm (at the same pumping power) yields a decrease in the lifetime of photoexcited charge carriers to τ ~ 2 ps. This effect is attributed to an increase in the capture cross section of trapping states for electrons with lower energies and to a decrease in the occupancy of traps at lower excitation densities.  相似文献   

2.
The effect of isovalent doping with P on the surface and bulk properties of the In0.53Ga0.47As alloy (below, InGaAs) was evaluated from variations in the photoluminescence and transmission spectra. It is established that isovalent doping decreases the nonradiative recombination rate in the bulk and on the surface of doped layers. The use of additional isovalent doping provided an improvement of parameters of the narrow-gap InGaAs-based solar cell used for the conversion of the concentrated solar radiation. The maximum efficiency of photovoltaic conversion in a spectral range of 900–1840 nm was 7.4–7.35% at a ratio of concentration of the solar radiation of 500–1000 for the AM1.5D Low AOD spectrum.  相似文献   

3.
Optical properties of InAs1−xNx/In0.53Ga0.47As (hereafter, abbreviated as InAsN/InGaAs) single quantum wells (SQWs) grown on InP substrates by gas source molecular-beam epitaxy are studied using photoluminescence (PL) measurements. By comparing the low-temperature PL spectra of InAs/InGaAs and InAsN/InGaAs SQWs, InAs and InAsN phases are found to coexist in the InAsN layer. Such serious alloy inhomogeneities result in obvious exciton localization by potential irregularities. The blue shift of the PL peak after rapid thermal annealing (RTA) is found to originate mainly from As-N interdiffusion inside the well layer. According to the temperature-dependent PL results, uniformity of the InAsN layer can be effectively improved by RTA, and the exciton localization is, thus, relieved. Comparison of luminescence quenching and excitation-power-dependent PL behavior between the QWs with and without nitrogen content suggests that the quality of the QW is degraded by the introduction of nitrogen, and the degradation can only be partially recovered by post-growth RTA.  相似文献   

4.
We report on the experimental investigation of the potential of InGaN alloys as thermoelectric (TE) materials. We have grown undoped and Si-doped In0.3Ga0.7N alloys by metalorganic chemical vapor deposition and measured the Seebeck coefficient and electrical conductivity of the grown films with the aim of maximizing the power factor (P). It was found that P decreases as electron concentration (n) increases. The maximum value for P was found to be 7.3 × 10−4 W/m K2 at 750 K in an undoped sample with corresponding values of Seebeck coefficient and electrical conductivity of 280 μV/K and 93␣(Ω cm)−1, respectively. Further enhancement in P is expected by improving the InGaN material quality and conductivity control by reducing background electron concentration.  相似文献   

5.
Hybrid quantum-confined heterostructures grown by metal-organic vapor-phase epitaxy (MOVPE) via the deposition of In0.4Ga0.6As layers with various nominal thicknesses onto vicinal GaAs substrates are studied by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence spectra of these structures show the superposition of two spectral lines, which is indicative of the bimodal distribution of the size and/or shape of light-emitting objects in an array. The dominant spectral line is attributed to the luminescence of hybrid “quantum well–dot” nanostructures in the form of a dense array of relatively small quantum dots (QDs) with weak electron and hole localization. The second, lower intensity line is attributed to luminescence from a less dense array of comparatively larger QDs. Analysis of the behavior of the spectral line intensities at various temperatures showed that the density of larger QDs grows with increasing thickness of the InGaAs layer.  相似文献   

6.
The total efficiency of the optical-terahertz conversion ηtotal in photoconductive antennas (PCAs) on the basis of different materials (LT-GaAs and In0.38Ga0.62As) under optical laser excitation at wavelengths of 800 and 1030 nm is studied. It is shown that the photoconductive material factor μτ2 has a significant impact on the magnitude of the THz photocurrent and the value of ηtotal. With the use of electromagnetic modeling, the processes of heat transfer are studied and the power of Joule heating in these PCAs is evaluated.  相似文献   

7.
The growth peculiarities of In0.8Ga0.2As quantum dots and their arrays on GaAs surface by metalorganic vapor-phase epitaxy are investigated. The bimodal size distribution of In0.8Ga0.2As quantum dots is established from the photoluminescence spectra recorded at different temperatures. The growth parameters were determined at which the stacking of 20 In0.8Ga0.2As quantum-dot layers in the active area of a GaAs solar cell makes it possible to enhance the photogenerated current by 0.97 and 0.77 mA/cm2 for space and terrestrial solar spectra, respectively, with the high quality of the p–n junction retained. The photogenerated current in a solar cell with quantum dots is higher than in the reference GaAs structure by ~1% with regard to nonradiative-recombination loss originating from stresses induced by the quantum-dot array.  相似文献   

8.
The results of time-domain spectroscopy of the terahertz (THz) generation in a structure with an In0.38Ga0.62As photoconductive layer are presented. This structure grown by molecular-beam epitaxy on a GaAs substrate using a metamorphic buffer layer allows THz generation with a wide frequency spectrum (to 6 THz). This is due to the additional contribution of the photo-Dember effect to THz generation. The measured optical-to-terahertz conversion efficiency in this structure is 10–5 at a rather low optical fluence of ~40 μJ/cm2, which is higher than that in low-temperature grown GaAs by almost two orders of magnitude.  相似文献   

9.
The complex high-frequency conductivity of GaAs/Al0.3Ga0.7As heterostructures that are δ-doped and modulation-doped with silicon was investigated by acoustic methods under conditions of the integer quantum Hall effect. Both the real (σ1) and imaginary (σ2) parts of the complex conductivity σ(ω, H)=σi?iσ2 were determined from the dependences of the absorption and velocity of surface acoustic waves on magnetic field. It is shown that, in the heterostructures with electron density ns=(1.3–7)×1011 cm?2 and mobility μ=(1–2)×105 cm2/(V s), the high-frequency conductivity near the centers of the Hall plateau is due to electron hopping between localized states. It is established that, with filling numbers 2 and 4, the conductivity of the Al0.3Ga0.7As:Si layer efficiently shunts the high-frequency hopping conductivity of the two-dimensional interface layer. A method of separating the contributions of the interface and Al0.3Ga0.7As:Si layers to the hopping conductivity σ(ω, H) is developed. The localization length of electrons in the interface layer is determined on the basis of the nearest neighbor hopping model. It is shown that, near the centers of the Hall plateau, both σ(ω, H) and ns depend on the cooling rate of a GaAs/Al0.3Ga0.7As sample. As a result, the sample “remembers” the cooling conditions. Infrared light and static strain also change both σ(ω, H) and ns. We attribute this behavior to the presence of two-electron defects (so-called DX? centers) in the Al0.3Ga0.7As:Si layer.  相似文献   

10.
Photoluminescence (PL) has been observed at room temperature from a Ga0.96In0.04As0.11Sb0.89 quaternary solid solution for the first time. High-quality epitaxial layers of n-type (Te-doped) Ga0.96In0.04As0.11Sb0.89 with low In content were grown by liquid phase epitaxy (LPE) lattice-matched to InAs(100) substrates from a Ga-rich melt. The PL properties of the material were investigated over a wide temperature range, and the principal radiative transitions were identified. In the temperature range <150 K, donor-acceptor recombination involving the first and second ionization state of native antisite defects was the dominant radiative-recombination process, whereas interband recombination was found to dominate at room temperature.  相似文献   

11.
A procedure for measuring the absorption coefficient for light propagating parallel to the surface of a GaN-based light emitting diode chip on a sapphire substrate is suggested. The procedure implies the study of emission from one end face of the chip as the opposite end face is illuminated with a light emitting diode. The absorption coefficient is calculated from the ratio between the intensities of emission emerging from the end faces of the sapphire substrate and the epitaxial layer. From the measurements for chips based on p-GaN/In0.2Ga0.8N/n-GaN structures, the lateral absorption coefficient is determined at a level of (23 ± 3)cm?1 at a wavelength of 465 nm. Possible causes for the discrepancy between the absorption coefficients determined in the study and those reported previously are analyzed.  相似文献   

12.
In2Se3 single crystals ∼40 mm long and 14 mm in diameter were grown by the Bridgman method. The composition of grown single crystals and their crystal structure were determined. The conductivity (σ) and Hall constant (R) of grown single crystals were measured and the first Schottky barriers Al/n-In2Se3 were fabricated. Rectification and photovoltaic effect were detected in the new structures. Based on the study of the photosensitivity spectra of Al/n-In2Se3 structures, the nature of the interband transitions and band gap of In2Se3 crystals were determined. It was concluded that the new structures can be applied to develop broadband photoconverters of optical radiation.  相似文献   

13.
The hexagonal modification of In2Se3 single crystal is grown by planar crystallization from nearly stoichiometric melt and by the vapor-phase method. For the first time, the Schottky barriers In/n-In2Se3, which are photosensitive in a wide incident-photon energy range of 1–3.8 eV at 300 K, are obtained. The nature of the interband photoactive absorption is studied. The energy-barrier height and interband optical-transition energy are estimated. It is concluded that the grown crystals can be used in broadband optical-radiation converters.  相似文献   

14.
0.9Pb(Zr0.53,Ti0.47)O3-0.1Pb(Zn1/3,Nb2/3)O3 (PZT–PZN) thin films and integrated cantilevers have been fabricated. The PZT–PZN films were deposited on SiO2/Si or SiO2/Si3N4/SiO2/poly-Si/Si membranes capped with a sol–gel-derived ZrO2 buffer layer. It is found that the membrane layer stack, lead content, existence of a template layer of PbTiO3 (PT), and ramp rate during film crystallization are critical for obtaining large-grained, single-phase PZT–PZN films on the ZrO2 surface. By controlling these parameters, the electrical properties of the PZT–PZN films, their microstructure, and phase purity were significantly improved. PZT–PZN films with a dielectric constant of 700 to 920 were obtained, depending on the underlying stack structure.  相似文献   

15.
Our group has focused attention on Ga2Te3 as a natural nanostructured thermoelectric material. Ga2Te3 has basically a zincblende structure, but one-third of the Ga sites are structural vacancies due to the valence mismatch between Ga and Te. It has been confirmed that (1) vacancies in Ga2Te3 exist as two-dimensional (2D) vacancy planes, and (2) Ga2Te3 exhibits an unexpectedly low thermal conductivity (κ), most likely due to highly effective phonon scattering by the 2D vacancy planes. However, the effect of the size and periodicity of the 2D vacancy planes on κ has been unclear. In addition, it has also been unclear whether only the 2D vacancy planes reduce κ or if point-type vacancies can also reduce κ. In the present study, we tried to prepare Ga2Te3 and Ga2Se3 with various vacancy distributions by controlling annealing conditions. The atomic structures of the samples were characterized by means of transmission electron microscopy, and κ was evaluated from the thermal diffusivity measured by the laser flash method. The effects of vacancy distributions on κ of Ga2Te3 and Ga2Se3 are discussed.  相似文献   

16.
Spectra of complete sets of optical functions for α-and β-In2Se3 in the range of 0–20 eV were calculated using experimental reflection spectra and the Kramers-Kronig relation. Special features in the spectra of optical functions for both In2Se3 phases were analyzed. The spectra of both permittivity and characteristic electron energy losses were decomposed into elementary transverse and longitudinal components using the combined Argand diagrams. The main parameters of the electron transitions for these components were determined. The structure of the components was compared with the structure of the expected spectrum of interband transitions.  相似文献   

17.
The electronic structure and optical properties of In4Sn3O12 and In4Ge3O12 are studied by the projector-augmented-wave method based on the density-functional theory within the generalized gradient approximation. The cation ordering of the two compounds is explored by means of first-principles calculations. It is found that the valence-band maximum of the materials is determined by the d states of metal elements and O-2p states; the conduction-band minimum is occupied by an admixture of the O-2p states, In-5s states, and Sn-5s or Ge-4s states, respectively. The two compounds are direct-bandgap semiconductors. The low intensity of the absorption coefficient, reflectivity, and loss function shows that they are good transparent conducting oxides.  相似文献   

18.
The topology of GaAs(100) and GaAs(111) surfaces before and after short treatments in Se vapor is studied by atomic-force microscopy. On the basis of this study, as well as ellipsometry and electron microscopy, a mechanism for the formation and growth of Ga2Se3(110) nanoislands and a layer on the GaAs(100) and GaAs(111) surfaces is proposed.  相似文献   

19.
GaInNAs has received a great deal of attention among the scientific community, owing to its ability to be grown pseudomorphically on GaAs substrates and, thus, to extend the possibility of using GaAs based materials for technologically important wavelengths such as 1.3 μm. Annealing was found to be a very useful tool in improving the optical characteristics of as-grown GaInNAs films. This work presents a systematic statistical analysis of two annealing parameters, time and temperature, for Ga0.8In0.2N0.01As0.99 quantum wells. Annealing, in general, has resulted in decreasing the emission wavelength by at most 0.08 μm, narrowing the peaks by at most ∼25 meV and increasing the intensity by at most 90 times. However, from the statistical analysis, it is observed that the temperature is the dominant factor among time and temperature in recovering the optical properties.  相似文献   

20.
In2Se3 films are produced by ion-beam evaporation at substrate temperatures of 313 and 623 K. As the target, In2Se3 single crystals grown by the vertical Bridgman method are used. The composition and structure of the crystals and films are determined by the X-ray spectral analysis and X-ray diffraction techniques, respectively. It is established that the crystals and films crystallize with the formation of a hexagonal structure. The band gap and refractive index of the In2Se3 films are determined from the transmittance and reflectance spectra. It is found that, as the substrate temperature is increased, the band gap increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号