首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Under the condition of melt thermal-rate treatment (MTRT) and low-temperature pouring (LTP), the tensile properties of Al-15%Si alloy are improved, the average size of primary Si is refined to about 20 μm from about 50 μm, and eutectic silicon can be well modified. The ultimate tensile strength and elongation are 201 MPa and 3.5%, and these values increase by 12% and 25%, respectively, compared with that obtained by conventional casting technique. The Al-15%Si alloy modified with Sr and RE additions was also studied for comparison purposes. The tensile properties of the Al-15%Si alloy treated with MTRT + LTP are superior to those modified with Sr or RE addition individually. The eutectic growth temperature difference between modified and unmodified melts was used to indicate the modification level. The modification effect of MTRT + LTP on Al-15%Si alloy is better than that modified with Sr or RE addition.  相似文献   

2.
The nucleation of eutectic crystals of hypoeutectic Al-7 wt pct Si-Mg casting alloys modified by Ce and Sr was studied by using differential scanning calorimeter (DSC) and scanning electron microscope (SEM). DSC results were applied to calculate the values of activity energy and nucleation work of eutectic nucleation for the alloys. These values were decreased and the eutectic nucleation frequency was increased with the addition of Ce and Sr to the alloys. Moreover, the morphology of eutectic silicon in the modified alloys was partially or fully modified as fine, fibrous or coral, and DSC plots show that the eutectic undercooling of Al-7 wt pct Si-Mg alloys were increased with additions of modified agents. The mechanism of eutectic modification is combined actions of the accelerated nucleation and the restricted growth.  相似文献   

3.
The eutectic Si microstructure in Al-8.5wt.%Si alloy was changed from large flakes to fine lamellar when the Sc amount in the alloy reached 0.2 wt.%. 0.8wt.%Sc was optimal in terms of attaining the best modification effect. Study on the distribution of the modifiers and measurement of the surface tension of Al-8.5wt.%Si alloy melt with added Sr, Na, and Sc modifiers, respectively, reveals that Sc modifies eutectic Si by a decrease of surface tension, while Sr and Na modify eutectic Si mainly by an impurity-induced twinning mechanism. Al-8.5wt.%Si-0.4wt.%Sc alloy displayed approximately 50 and 70% increases in tensile strength and elongation, respectively, over Al-8.5wt.%Si alloy in the cast state. It also presented approximately 65 and 70% increases in tensile strength and elongation, respectively, over Al-8.5wt.%Si alloy at a ppt heat-treated state at 200°C for 3 h.  相似文献   

4.
The effects of minor Sr additions on the as-cast microstructure and mechanical properties of the ZA84 magnesium alloy were investigated. The results indicate that adding 0.05-0.15 wt.% Sr to the ZA84 alloy does not cause an obvious change in the morphology and distribution of the Mg32(Al,Zn)49 phase. However, the grains of the Sr-containing ZA84 alloys are effectively refined. Among the Sr-containing ZA84 alloys, the grains of the alloy added 0.10 wt.% Sr are relatively finer than other alloys. Furthermore, adding 0.05-0.15 wt.% Sr to the ZA84 alloy improves the tensile properties at room temperature and 150 °C but decreases the creep properties. Among the Sr-containing ZA84 alloys, the alloy added 0.10 wt.% Sr obtains the optimum tensile properties at room temperature and 150 °C.  相似文献   

5.
P and RE complex modification of hypereutectic A1-Si alloys was conducted. The influences of P, RE content on the microstructure and mechanical properties of alloys were investigated. The complex modifications of P and RE make the coarse block primary silicon obviously refined and the large needle eutectic silicon modified to the fine fibrous or lamella ones. P mainly refines the primary silicon, but excess P is unfavorable to the refinement of primary silicon. RE can well refine the primary and eutectic silicon, but its modification effect on the eutectic silicon is more obvious. P can repress the modification of RE on the eutectic silicon The alloys with the additions of 0.08% P and 0.60% RE have the optimal microstructure and the highest mechanical properties. Compared with the unmodified alloy, the primary silicon of alloys can be refined from 66.4 μm to 23.3μm and the eutectic silicon can be refined from 8.3 μm to 5.2μm. The tensile strength is improved from 256 MPa to 306 MPa and the elongation is improved from 0.35% to 0.48%.  相似文献   

6.
The microstructures and corrosion behaviors of the Al–6.5Si–0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy, X-ray diffraction, electrochemical measurement techniques and immersion corrosion tests and compared with those of Sr-modified alloy. The results show that Sc has evident refining and modifying effects on the primary α(Al) and the eutectic Si phase of the alloy, and the effects can be enhanced with the increase of Sc content. When the Sc content is increased to 0.58 wt.%, its modifying effect on the eutectic Si is almost same as that of Sr. Sc can improve the corrosion resistance of the test alloy in NaCl solution when compared with Sr, but the excessively high Sc content cannot further increase the corrosion resistance of the alloy. The corrosion of the alloys mainly occurs in the eutectic region of the alloy, and mostly the eutectic α(Al) is dissolved. This confirms that Si phase is more noble than α(Al) phase, and the galvanic couplings can be formed between the eutectic Si and α(Al) phases.  相似文献   

7.
The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-4Y-1.2Mn-1Zn (wt.%) alloy were investigated using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The microstructural results indicate that small additions of Zr and/or Sr to the Mg-4Y-1.2Mn-1Zn alloy do not cause an obvious change in the morphology and distribution of the Mg12YZn phase in the alloy. The tensile and creep tests indicate that, although small additions of Zr and/or Sr to the Mg-4Y-1.2Mn-1Zn alloy do not have obvious effects on the creep properties of the alloy, the tensile properties at room temperature and 300 °C for the alloys added with Zr and/or Sr are improved. Among the Zr- and/or Sr-containing alloys, the alloy specifically added with of 0.5 wt.% Zr + 0.1 wt.% Sr obtains the optimum tensile properties, and is followed by the alloys added with 0.5 wt.% Zr and 0.1 wt.% Sr.  相似文献   

8.
研究了单一和复合Al-5Ti-B、RE和Al-10Sr细化变质剂对砂型铸造Al-7.5Si-4Cu合金力学性能、显微组织、细化变质效果及其金属间化合物变化的影响。结果表明:与单一细化变质处理以及铸态相比,经过添加质量分数为0.8%的Al-5Ti-B、0.1%的RE和0.1%的Al-10Sr细化变质剂复合细化变质处理后铸造Al-7.5Si-4Cu合金的力学性能和显微组织都得到了显著改善。对于单一细化变质处理,加入0.8%的Al-5Ti-B中间合金后,合金的抗拉强度和布氏硬度得到大幅度提高,并且细化了α(Al)相。加入0.1%的RE中间合金后,合金的伸长率得到了最大程度的提高。这是因为RE的加入使铝合金熔液而得到净化,同时改变了金属间化合物的形状。而加入0.1%的Al-10Sr变质剂后,合金的屈服强度得到改善,但其他性能的改善有限。Al-10Sr变质剂对共晶硅具有较强的变质作用,但使得铝合金熔体含气量增加并形成严重的柱状晶组织。利用硅相的平均面积和长宽比描述细化变质效果得到的结论与力学性能和组织分析的结果相同。  相似文献   

9.
研究了La添加量对Sr变质Al-9Si-Cu合金组织及冷却曲线特征的影响。结果表明,随La含量的增加(0~0.8%时),初生α-Al相尺寸减小,冷却曲线上的初生α-Al相生长最低温度Tmin-α和最高温度TG-α升高;La含量较低时(0.1%~0.2%),明显增强共晶Si的变质效果,冷却曲线上的共晶最低温度Tmin-si和最高温度TG-si降低,共晶再辉温度(ΔTR-Si)值增加;La含量较高时(0.4%~0.8%),共晶Si的变质效果变差,Tmin-si、TG-si和ΔTR-Si减小;ΔTR-Si与共晶Si变质效果有良好的对应关系,ΔTR-Si值越大,变质效果越好。  相似文献   

10.
The modification of silicon in an Al-30Si alloy was studied using optical microscopy, electron probe micro-analysis, transmission electron microscopy and differential scanning calorimetry. It is found that phosphorus master alloys combined with boron master alloys have good modification effect on primary silicon but no evident modification effect on eutectic silicon, while boron combined with cerium has good modification effect on eutectic silicon. The results of differential scanning calorimetry show that phosphorus, boron or cerium addition and their combined addition have different undercooling effects on eutectic silicon. Many scholars thought that AlP particles were the nuclei of eutectic silicon when phosphorus was enough in the alloy. Our results show that β-(Al,Si,Fe) can still be the nucleus of plate-like eutectic silicon while AlP is the nucleus of primary silicon when there is enough phosphorus in the melt. In addition, the mechanism about the modification was also discussed.  相似文献   

11.
The microstructure and mechanical properties of Al-Si-Cu-Mg alloys containing 12 wt.% to 30 wt.% Si are discussed. The eutectic and primary silicon particles are nodulized by a designed modification practice followed by a solution heat treatment of 6 h to 8 h at 510°C to 520°C. Metallographic analysis was used to measure structural characteristics of the Si-rich structures. Spheroidization of silicon phase leads to an increase in tensile strength and ductility of alloys at room temperature and 300°C compared with commercial Al-Si alloy. Increasing Si concentration causes the ultimate tensile strength and elongation at room temperature to fall due to the appearance of coarse silicon particles, but the ultimate tensile strength at 300°C remains unchanged.  相似文献   

12.
This study investigates the effect of Sc on the formation of primary silicon during the solidification of hypereutectic Al–20Si alloys. The evolution of the microstructure was studied using thermal analysis. The results show that the addition of 0·2 and 0·4 wt-% Sc suppresses the nucleation of primary silicon due to the formation of ScP particles instead of AlP particles. For large Sc additions, at the centre of the samples, the primary silicon has a star-shaped morphology with thin branches. The addition of Sc decreases the P refinement ef?ciency in hypereutectic Al–20Si alloys, which may be a result of the formation of a ScP phase. The results suggest that the addition of Sc poisons the nucleant particles of the primary and eutectic silicon.  相似文献   

13.
This study evaluates the influence of grain refiners/modifiers on the mechanical properties of the Al-7Si and Al-11Si alloys with an experiment of quantitative and qualitative correlations with the microstructure. Modification of Al-Si alloys with strontium additions and grain refinement with Al-Ti, Al-B and Al-T-B master alloy additions are demonstrated to be efficient on Al-Si alloys. A single master alloy with combined additions of Sr and Ti and/or B was prepared and the microstructure and mechanical properties were studied. The results show that boron rich (Al-3B-Sr and Al-1Ti-3B-Sr) master alloys are more efficient than Ti rich (Al-3Ti-Sr and Al-5Ti-1B-Sr) master alloys considering their combined grain refinement and modification effect on Al-7Si and Al-11Si alloys. However, the presence of Sr does not influence the grain refinement. Similarly, presence of grain refiner does not influence the modification of eutectic Si.  相似文献   

14.
通过扫描电镜、X射线衍射、差热分析以及抗拉和蠕变性能测试等手段,调查和比较了Ce、Y和Gd对Mg-3Sn-2Sr镁合金铸态组织和力学性能的影响。结果表明:Mg-3Sn-2Sr三元合金主要由?-Mg、初生和共晶SrMgSn以及Mg2Sn相组成。当添加1.0%Ce、1.0%Y和1.0%Gd到Mg-3Sn-2Sr合金后,合金中分别形成了Mg12Ce、YMgSn、GdMgSn和/或Mg17Sr2相。同时,合金中初生SrMgSn相的形成被抑制,且呈针状的粗大初生SrMgSn相也被变质和细化。此外,添加1.0%Ce、1.0%Y和1.0%Gd均能同时改善Mg-3Sn-2Sr合金的抗拉性能和蠕变性能。在含Ce、Y和Gd合金中,含Ce合金的抗拉性能相对较含Y和含Gd合金的高。  相似文献   

15.
The effects of Ti and La additions on the microstructures and mechanical properties of B-refined and Sr-modified Al–11Si alloys were investigated in the present work. The interactions among Ti, La, B and Sr elements were discussed employing microstructure observation, thermal analysis and tensile test, respectively. It was found that the addition of 0.05 wt% B induces a transformation of eutectic Si from finely fibrous to coarsely plate-like morphology in the Al–11Si alloy with 0.02 wt%Sr modification, owing to the poisoning of IIT mechanism, and the eutectic Si grows only with TPRE mechanism. Both titanium and lanthanum can neutralize the co-poisoning effect between Sr and B in the Al–11Si alloy, but the neutralizing effect of La is dependent on the addition sequence. The combinative addition of La and B elements promotes the effective refinement of α-Al grains, but an inhomogeneous modification of eutectic Si phases is also observed, leading to a slightly decrease in the elongation.  相似文献   

16.
Effects of Sc content on the mechanical properties of Al-Sc alloys   总被引:1,自引:0,他引:1  
The effects of Sc content on the mechanical properties of Al-Sc alloys were investigated. The results show that the strengths of all the tested alloys with 0.1 wt.%, 0.3 wt.%, and 0.4 wt.% Sc additions increase initially with an increase in annealing time, due to the increase in volume fraction and size and the decrease in particle interspacing of Al3Sc particles. After reaching peak values, the strengths of all the tested alloys start to decrease with increasing annealing time due to the coarsening and increase in particle interspacing of Al3Sc particles. It has also been shown that the alloy with 0.3 wt.% Sc has a higher strength and a lower elongation than the alloys with 0.1 wt.% and 0.4 wt.% Sc. The increase in strength and the decrease in elongation of the alloy with 0.3 wt.% Sc are due to the smaller particle interspacing of Al3Sc particles, resulting in a strong inhibition of dislocation movement during deformation.  相似文献   

17.

Effects of ageing treatment on the microstructures, mechanical properties and corrosion behavior of the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr [x=0, 0.2 (wt.%), y=0, 0.1, 0.2, 0.4 (wt.%)] alloys were investigated. Results showed that Ca or/and Sr additions promoted the precipitation hardening behavior of Mg-4.2Zn-1.7RE-0.8Zr alloy and shortened the time to reaching peak hardness from 13 h to 12 h. The maximum hardness of 77.1±0.6 HV for the peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy was obtained. The microstructures of peak-aged alloys mainly consist of α-Mg phase, Mg51Zn20 phase and ternary T-phase. The Zn-Zr phase is formed within the α-Mg matrix, and the Mg2Ca phase is formed near T-phase due to the enrichment of Ca in front of the solid-liquid interface. Furthermore, fine short rod-shaped β′1 phase is precipitated within the α-Mg matrix in the peak-aged condition. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy exhibits optimal mechanical properties with an ultimate tensile strength of 208 MPa, yield strength of 150 MPa and elongation of 3.5%, which is mainly attributed to precipitation strengthening. In addition, corrosion properties of experimental alloys in the 3.5wt.% NaCl solution were studied by the electrochemical tests, weight loss, hydrogen evolution measurement and corrosion morphology observation. The results suggest that peak-aged alloys show reduced corrosion rates compared with the as-cast alloys, and minor additions of Ca and/or Sr improve the corrosion resistance of the Mg-4.2Zn-1.7RE-0.8Zr alloy. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy possesses the best corrosion resistance, which is mainly due to the continuous and compact barrier wall constructed by the homogeneous and continuous second phases.

  相似文献   

18.
研究了添加Ce与P+Sr复合变质对Al-21Si-1.5Cu-0.5Mg-2.5Fe合金显微组织与性能的影响。结果表明:添加1.5%Ce使粗大针状铁相消失,形成富Ce富Fe的鱼骨状相;P+Sr复合变质可使初晶硅平均尺寸由70 mm细化到20mm,共晶硅平均截线长降到2.1 mm,合金室温抗拉强度比未变质前提高21.5%,与P+Sr+Ce复合变质的Al-21Si-1.5 Cu-1.5Ni-2.5Fe-0.5Mg合金相当。  相似文献   

19.
The microstructure, tensile properties and corrosion behavior of the Mg-8 wt.% Mg2Si-x%Ca alloy have been studied by the use of optical microscopy, scanning electron microscopy equipped with energy-dispersive spectroscopy, x-ray diffraction, standard tensile testing, polarization test and electrochemical impedance spectroscopy (EIS) measurements. Microstructural studies indicated that Ca modifies both primary and eutectic Mg2Si phase. It was found that the average size of primary Mg2Si particles is about 60 μm, which is dropped by about 82% in the alloy containing 0.05 wt.% Ca. By the addition of different Ca contents, Ca-rich intermetallics (i.e., CaSi2 and CaMgSi) were formed. The modification mechanism of adding Ca during solidification was found to be due to the strong effect of CaMgSi phase as a heterogonous nucleation site, apart from CaSi2 which was reported before, for Mg2Si intermetallics. Tensile testing results ascertained that Ca addition enhances both ultimate tensile strength (UTS) and elongation values. The optimum amount of Ca was found to be 0.1 wt.%, which improved UTS and elongation values from about 130 MPa and 2% to 165 MPa and 5.5%, whereas more Ca addition (i.e., 3 wt.%) reduced the tensile properties of the alloy to about 105 MPa and 1.8%, which can be due to the formation of CaMgSi intermetallics with deteriorating needle-like morphology. Polarization and EIS tests also showed that the Mg-3%Si-0.5%Ca alloy pronounces as the best anti-corrosion alloy. Nevertheless, further added Ca (up to 3 wt.%) deteriorated the corrosion resistance due to predominance of worse galvanic coupling effect stemmed from the presence of stronger CaMgSi cathode in comparison with Mg2Si. With higher Ca additions, an adverse effect was seen on corrosion resistance of the Mg-3%Si alloy, as a result of forming a weak film on the alloy specimen surface.  相似文献   

20.
生物可降解锌基合金,特别是添加合金元素的锌-镁(Zn-Mg)合金,已获得广泛研究以改善其力学性能和腐蚀性能.由于这些性能主要依赖于合金的显微组织,因此任何评价都应该从了解影响其形成的条件开始.本研究旨在探讨凝固冷却速率对Zn-1Mg-(0.5Ca,0.5Mn)(质量分数,%)合金瞬态凝固过程中显微组织演化的影响.结果表...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号