首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study presents the cyclic deformation behaviour of three high‐alloyed austenitic cast steels which are characterized by different chemical compositions leading to different austenite stabilities and stacking fault energies. Thus, depending on the chemical composition different deformation mechanisms arise which have a significant influence on the cyclic deformation behaviour and life time relations. The materials were characterized under total‐strain control. The fatigue life relations of Basquin and Manson‐Coffin are applied successfully for all steel variants. The cyclic stress‐strain response is described using the Ramberg‐Osgood relationship. It is shown that the parameters n' and K' depend strongly on the accumulated plastic strain λp. The mechanical properties are discussed together with microstructural investigations of deformation structures and martensitic transformations as well as twinning, respectively.  相似文献   

3.

Since greater high-temperature strength is required for maintaining high-performance turbo-chargers at higher exhaust gas temperatures, e.g., 1323 K (1050 °C), high-Ni (20 wt pct) austenitic steel (ASTM HK40 steel) is presented as an excellent turbo-charger candidate material. To enhance the strength, three types of austenitic cast steel were fabricated in this study by controlling the Cr content in HK40 steel, and high-temperature strength improvement was achieved by detailed microstructural evolution including carbide formation and matrix strengthening. Room temperature and high-temperature strengths were expected to be proportional to the carbide volume fraction, but revealed an opposite trend because the steel containing more Cr (having more carbides) revealed lower strength than the steel containing less Cr (having fewer carbides). This result was associated mainly with the M7C3 to M23C6 decomposition occurring at high temperatures in the less-Cr-steel that beneficially strengthened the austenite matrix and reduced the hardness difference between the carbide and matrix, consequently improving the high-temperature strength. In considering the alloying prices (14 pct cost saving of alloying elements) as well as the high-temperature strength, the steel containing less Cr is promising for new high-performance turbo-charger applications.

  相似文献   

4.
Effects of Mn addition (17, 19, and 22 wt pct) on tensile and Charpy impact properties in three austenitic Fe-Mn-C-Al-based steels were investigated at room and cryogenic temperatures in relation with deformation mechanisms. Tensile strength and elongation were not varied much with Mn content at room temperature, but abruptly decreased with decreasing Mn content at 77 K (?196 °C). Charpy impact energies at 273 K (0 °C) were higher than 200 J in the three steels, but rapidly dropped to 44 J at 77 K (?196 °C) in the 17Mn steel, while they were higher than 120 J in the 19Mn and 22Mn steels. Although the cryogenic-temperature stacking fault energies (SFEs) were lower by 30 to 50 pct than the room-temperature SFEs, the SFE of the 22Mn steel was situated in the TWinning-induced plasticity regime. In the 17Mn and 19Mn steels, however, α′-martensites were formed by the TRansformation-induced plasticity mechanism because of the low SFEs. EBSD analyses along with interrupted tensile tests at cryogenic temperature showed that the austenite was sufficiently deformed in the 19Mn steel even after the formation of α′-martensite, thereby leading to the high impact energy over 120 J.  相似文献   

5.
Tensile properties of high Mn austenitic Fe‐26.5Mn‐3.6Al‐2.2Si‐0.38C‐0.005B (HM1) and Fe‐18.9Mn‐0.62C‐0.02Ti‐0.005B (HM2, in mass%) steels after different solution treatments have been investigated. The results show that the solution treatment has a significant influence on microstructure and mechanical properties of the investigated steels. By appropriate solution treatment the product of tensile strength (Rm) and total elongation (A50) of the hot rolled steel can be improved from ? 40000‐50000 MPa% to ? 55000‐65000 MPa% depending on the steel chemical composition. A solution treatment with a very high temperature, e.g. at 1100 °C for the Fe‐18.9Mn‐0.62C‐0.02Ti‐0.005B steel, results in a significant increase in the ?‐martensite fraction during quenching. This deteriorates the ductility of the steel. A solution treatment at low temperature in the austenitic range, e.g. at 700 °C for the Fe‐18.9Mn‐0.62C‐0.02Ti‐0.005B steel, results in a decrease in the grain size of the steel. This suppresses the ?‐martensite transformation during cooling. EBSD measurements revealed the mechanisms contributing to the overall plasticity of the investigated steels on the microscale. The plasticity of the 26.5Mn‐3.6Al‐2.2Si‐0.38C‐0.005B steel is produced mainly by TWIP mechanism under the examined experimental conditions, whereas for the Fe‐18.9Mn‐0.62C‐0.02Ti‐0.005B steel TWIP and TRIP mechanisms occur with different degrees depending on the test temperature of the tensile test.  相似文献   

6.
7.
Metallurgical and Materials Transactions A - Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved...  相似文献   

8.
0Cr21Ni6Mn9N奥氏体不锈钢的应变强化行为   总被引:2,自引:0,他引:2  
研究了不同氮含量的0Cr21Ni6Mn9N奥氏体不锈钢的塑性流变行为。结果表明,其形变强化特性可用Ludwigson模型来表示。钢在不同的应变下表现出不同的塑性流变行为,存在一个瞬变应变。当应变量低于它时,流变行为与Ludwik方程存在一个正偏差;而应变量高于它时,则符合Ludwik模型。造成这一差异的主要原因是位错滑移模式发生了改变,低于瞬变应变时为单系滑移,高于瞬变应变时为多系滑移。氮对位错滑移模式的影响主要表现为对瞬变应变的影响。随氮含量的增加,瞬变应变被推向更高的水平,这意味着氮原子使位错在更大的应变下才产生多系滑移和交滑移。  相似文献   

9.
One of the most important preoccupation of car manufacturers is to reduce emissions and hence to reduce weight of cars. One of the outstanding materials able to reduce weight while at the same time keeping the same crash absorption and hence safety, is austenitic steel. Austenitic stainless steels are used in crash relevant parts of cars. Moreover, designers can use their very good corrosion resistance and their well known surface aspect for structural visible parts like wheels, cross members, roof panels or tailgates. In this paper, stainless steels for automotive use are presented in detail. First, their chemical composition and tensile properties are explained. Then, a model for forming and crash behaviour is described. Using this model, stainless steels can be engineered into automotive parts and thus stainless steel can be considered as a workable and predictable material for the automotive industry.  相似文献   

10.
11.
Metallurgical and Materials Transactions A - Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling....  相似文献   

12.
双辊连铸不锈钢薄带凝固组织特点   总被引:1,自引:0,他引:1  
 通过金相观察分析了同径双辊薄带连铸机上生产的奥氏体不锈钢薄带的凝固组织,结果表明:铸带凝固组织包括2个柱状晶区和1个等轴晶区,其等轴晶呈近球形或蔷薇形。与传统连铸板坯相比,其柱状晶区一次及二次枝晶的间距较小,等轴晶粒内部为非枝晶结构,其尺寸大约是连铸坯等轴晶的1/10,凝固组织更致密。  相似文献   

13.
In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.  相似文献   

14.
15.
16.
对304L和316L奥氏体不锈钢试样在充氢后和充氢同时进行X射线衍射分析,观察到在充氢过程中存在奥氏体晶格膨胀-收缩-膨胀的现象;在充氢后时效一段时间的情况下,存在奥氏体晶格收缩-膨胀-收缩的现象,并初步讨论了可能的原因。  相似文献   

17.
18.
19.

In this work, two medium Mn steels (5.8 and 5.7 wt pct Mn) were subjected to a quenching and partitioning (Q&P) treatment employing a partitioning temperature which corresponded to the start of austenite reverse transformation (ART). The influence of a 1.6 wt pct Ni addition in one of the steels and cycle parameters on austenite stability and mechanical properties was also studied. High contents of retained austenite were obtained in the lower quenching temperature (QT) condition, which at the same time resulted in a finer microstructure. The addition of Ni was effective in stabilizing higher contents of austenite. The partitioning of Mn and Ni from martensite into austenite was observed by TEM–EDS. The partitioning behaviour of Mn depended on the QT condition. The lower QT condition facilitated Mn enrichment of austenite laths during partitioning and stabilization of a higher content of austenite. The medium Mn steel containing Ni showed outstanding values of the product of tensile strength (TS) and total elongation (TEL) in the lower QT condition and a higher mechanical stability of the austenite.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号