首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO2-CO-H2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H2O or CO2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO2/CO = 40/7). Rate expressions that correlate CO2 and H2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows:
$$ {\text{Rate}}\left( {\frac{\text{mol}}{{{\text{m}}^{2} {\text{s}}}}} \right) = 406 \exp \left( {\frac{{ - 50.2 \,{\text{kJ}}/{\text{mol}}}}{RT}} \right)\left( {p_{\text{Zn}} p_{{{\text{CO}}_{2} }} - p_{\text{CO}} /K_{{{\text{eq}},{\text{CO}}_{2} }} } \right)\,\frac{\text{mol}}{{{\text{m}}^{2} \times {\text{s}}}} $$
$$ {\text{Rate}}\left( {\frac{\text{mol}}{{{\text{m}}^{2} {\text{s}}}}} \right) = 32.9 \exp \left( {\frac{{ - 13.7\, {\text{kJ}}/{\text{mol}}}}{RT}} \right)\left( {p_{\text{Zn}} p_{{{\text{H}}_{2} {\text{O}}}} - p_{{{\text{H}}_{2} }} /K_{{{\text{eq}},{\text{H}}_{2} {\text{O}}}} } \right)\,\frac{\text{mol}}{{{\text{m}}^{2} \times {\text{s}}}} $$
It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO2 and H2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well as the homogeneous nucleation model of metallic zinc were applicable for various temperatures, zinc partial pressures, CO2:CO ratios, and H2O partial pressures.
  相似文献   

2.
《钢铁冶炼》2013,40(1):15-21
Abstract

Iron ore reduction and iron cementation by H2-CH4-Ar gas mixtures were investigated in a laboratory isothermal fixed bed reactor in the temperature range 600-925°C. Iron ore was first reduced to metallic iron by hydrogen, then metallic iron was carburised to cementite by methane. Increasing temperature and hydrogen content accelerated the reduction process. However, for >55 vol.-%, the effect of H2 content was not significant. Methane had almost no effect on the reduction process. Increasing temperature increased the rate of iron cementation and also the rate of free carbon deposition. Optimum conditions for cementite formation were: temperature 750°C and reducing/carburising gas contents of 40-55 vol.-%H2 and 35 vol.-%CH4. Under these conditions, reduction of iron ore to cementite was completed in ~15 min. A two interface grain model and a volume reaction model were used to simulate the process of iron ore reduction and iron cementation. The simulated results for both reduction and cementation were consistent with the experimental data.  相似文献   

3.
Industrial grade MoO2 powders have a plenty of advantages relative to MoO3 in the direct alloying steelmaking processes. In this work, the reduction of industrial grade MoO3 powder with CO gas or the mixed gases of CO and CO2 has been investigated in detail in order to prepare industrial grade MoO2 powder. It is found that reaction temperature has a significant effect on the product composition. Using pure CO as the reducing gas, for temperatures below 868 K (595 °C), the main product is MoO2 with some whisker carbon; for temperatures above 868 K (595 °C) the main reaction products are MoC and amorphous carbon; as the reaction temperature further increased, the final reaction product is Mo2C. In addition, Mo4O11 is always formed as an intermediate product during the reaction processes both at lower and higher temperatures, which is similar to that observed on reduction of MoO3 by H2. It is found that adding CO2 to the reducing gases eliminated carbon formation but still allows the formation of MoO2 during the reaction process. This method may be applied to produce industrial grade MoO2.  相似文献   

4.
5.
The reduction and carburization of fine iron-ore (100 - 200 μm, Fe2O3 mass content of 98%) by gas mixtures containing CO, H2 and CH4 was investigated in a fluidized bed at temperatures of 400 up to 700°C. In this temperature range carbon is formed from CO via the Boudouard reaction as well as by the decomposition of methane. Yet, both reactions only occur in the presence of metallic iron and therefore only at reduction degrees of the DRI (direct-reduced iron) of more than 33%. As a contribution to the development of a DRI process without a costly hot briquetting, the influence of the C- and O-content of the DRI on its tendency to reoxidize was also investigated by means of the ignition point method. It was found that reoxidation (at 20°C) of a totally reduced DRI can be suppressed by carbon mass contents of more than 7%. With decreasing reduction degrees, this value decreases, until for reduction degrees of less than 80% no carbon is needed to suppress reoxidation. With regard to the final reduction of the DRI in the electric arc furnace, the molar C to O ratio should be one. The maximal reduction degree is then about 86% to stabilize carbon rich DRI (C mass content of 4%) against reoxidation.  相似文献   

6.
For reduction of iron oxides by volatiles from coal, the major reductant was found to be H2, and it can affect the overall reduction of iron oxides. In this study, the reduction by actual volatiles of composite pellets at 1000 °C was studied. The volatile reduction of the hand-packed Fe2O3/coal composite pellet as it is devolatilizing out of the pellet was found to be negligible. However, the reduction of iron oxide pellets at the top layer by volatiles from the bottom layers of a three-layer pellet geometry was observed to be about 15 pct. From the morphological observations of partially reduced pellets and the computed rates of bulk mass transfer, volatile reduction appears to be controlled by a mixed-controlled mechanism of bulk gas mass transfer and the limited-mixed control reduction kinetics. Using the reduction rate obtained from the single pellet experiments with pure hydrogen and extrapolating this rate to an H2 partial pressure corresponding to the H2 from the volatiles, an empirical relationship was obtained to approximately predict the amount of volatile reduction up to 20 pct.  相似文献   

7.
Direct reduced iron (DRI) is the product of some commercial direct reduction (DR) of iron ore on base of natural gas. DRI tends to oxidize in air generally above 300 °C and then follows spontaneous combustion. To control the oxidation mechanism, several investigators have used different iron samples and methods. This paper gives the results of experimental work carried out for determination of DRI oxidation. The behaviour of DRI oxidation in air after isothermal reduction of hematite pellets with different size, temperature and H2 / CO mixture is investigated.  相似文献   

8.
The application of off-gases from the integrated steel plant for the direct reduction of lump iron ore could decrease not only the total production cost but also the energy consumption and CO2 emissions. The current study investigates the efficiency of reformed coke oven gas (RCOG), original coke oven gas (OCOG), and coke oven gas/basic oxygen furnace gas mixtures (RCOG/BOFG and OCOG/BOFG) in the direct reduction of lump iron ore. The results were compared to that of reformed natural gas (RNG), which is already applied in the commercial direct reduction processes. The reduction of lump ore was carried out at temperatures in the range of 1073 K to 1323 K (800 °C to 1050 °C) to simulate the reduction zone in direct reduction processes. Reflected light microscopy, scanning electron microscopy, and X-ray diffraction analysis were used to characterize the microstructure and the developed phases in the original and reduced lump iron ore. The rate-controlling mechanism of the reduced lump ore was predicted from the calculation of apparent activation energy and the examination of microstructure. At 1073 K to 1323 K (800 °C to 1050 °C), the reduction rate of lump ore was the highest in RCOG followed by OCOG. The reduction rate was found to decrease in the order RCOG > OCOG > RNG > OCOG-BOF > RCOG-BOFG at temperatures 1173 K to 1323 K (900 °C to 1050 °C). The developed fayalite (Fe2SiO4), which resulted from the reaction between wüstite and silica, had a significant effect on the reduction process. The reduction rate was increased as H2 content in the applied gas mixtures increased. The rate-determining step was mainly interfacial chemical reaction with limitation by gaseous diffusion at both initial (20 pct reduction) and moderate (60 pct reduction) stages of reduction. The solid-state diffusion mechanism affected the reduction rate only at moderate stages of reduction.  相似文献   

9.
10.
Influence of microwave treatment on the previously proposed phosphorus removal process of oolitic high phosphorus iron ore (gaseous reduction followed by melting separation) has been studied. Microwave treatment was carried out using a high-temperature microwave reactor (Model: MS-WH). Untreated ore fines and microwaved ore fines were then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). Thereafter, experiments on the proposed phosphorus removal process were conducted to examine the effect of microwave treatment. Results show that microwave treatment could change the microstructure of the ore fines and has an intensification effect on its gaseous reduction by reducing gas internal resistance, increasing chemical reaction rate and postponing the occurrence of sintering. Results of gaseous reduction tests using tubular furnace indicate both microwave treatment and high reduction temperature high as 1273 K (1000 °C) are needed to totally break down the dense oolite and metallization rate of the ore fines treated using microwave power of 450 W could reach 90 pct under 1273 K (1000 °C) and for 2 hours. Results of melting separation tests of the reduced ore fines with a metallization rate of 90 pct show that, in addition to the melting conditions in our previous studies, introducing 3 pct Na2CO3 to the highly reduced ore fines is necessary, and metal recovery rate and phosphorus content of metal could reach 83 pct and 0.31 mass pct, respectively.  相似文献   

11.
Among heavy industrial sectors worldwide, the steel industry ranks first in carbon dioxide (CO2) emissions. Technologies that produce direct reduced iron (DRI) enable the industry to reduce emissions or even approach net-zero CO2 emissions for steel production. Herein, comprehensive cradle-to-gate (CTG) life cycle analysis (LCA) and techno-economic analysis (TEA) are used to evaluate the CO2 emissions of three DRI technologies. Compared to the baseline of blast furnace and basic oxygen furnace (BF–BOF) technology for steel making, using natural gas (NG) to produce DRI has the potential to reduce CTG CO2 emissions by 33%. When 83% or 100% renewable H2 is used for DRI production, DRI technologies can potentially reduce CO2 emissions by 57% and 67%, respectively, compared to baseline BF–BOF technology. However, the renewable H2 application for DRI increases the levelized cost of steel (LCOS). When renewable natural gas (RNG) and clean electricity are used for steel production, the CTG CO2 emissions of all the DRI technologies can potentially be reduced by more than 90% compared to the baseline BF–BOF technology, although the LCOS depends largely on the cost of RNG and clean electricity.  相似文献   

12.
A novel flash ironmaking process based on hydrogen-containing reduction gases is under development at the University of Utah. The goal of this work was to study the possibility of the re-oxidation of iron particles in a H2-H2O gas mixture in the lower part of the flash reactor from the kinetic point of view. The last stage of hydrogen reduction of iron oxide, i.e., the reduction of wustite, is limited by equilibrium. As the reaction mixture cools down, the re-oxidation of iron could take place because of the decreasing equilibrium constant and the high reactivity of the freshly reduced fine iron particles. The effects of temperature and H2O partial pressure on the re-oxidation rate were examined in the temperature range of 823 K to 973 K (550 °C to 700 °C) and H2O contents of 40 to 100 pct. The nucleation and growth kinetics model was shown to best describe the re-oxidation kinetics. The partial pressure dependence with respect to water vapor was determined to be of first order, and the activation energy of re-oxidation reaction was 146 kJ/mol. A complete rate equation that adequately represents the experimental data was developed.  相似文献   

13.
The effects of reducing agent, CaF2 content, and reaction temperature upon the silicothermic reduction of MnO in the BaO-MnO-MgO-CaF2 (-SiO2) slags were investigated. Mn recovery was proportional to Si activity in the molten alloy. Moreover, 90 pct yield of Mn recovery was obtained under 5 mass pct CaF2 content and 1873 K (1600 °C) reaction temperature. Increasing CaF2 content above 5 pct yielded little or no further increase in Mn recovery, because it was accompanied by increased slag viscosity owing to the precipitation of high melting point compounds such as Ba2SiO4.  相似文献   

14.
We investigated the effect of flux (lime) addition on the reduction behavior of iron oxide in copper slag by solid carbon at 1773 K (1500 °C). In particular, we quantified the recovery of iron by performing typical kinetic analysis and considering slag foaming, which is strongly affected by the thermophysical properties of slags. The iron oxide in the copper slag was consistently reduced by solid carbon over time. In the kinetic analysis, we determined mass transfer coefficients with and without considering slag foaming using a gas holdup factor. The mass transfer of FeO was not significantly changed by CaO addition when slag foaming was ignored, whereas the mass transfer of FeO when slag foaming was considered was at a minimum in the 20 mass pct CaO system. Iron recovery, defined as the ratio of the amount of iron clearly transferred to the base metal ingot to the initial amount of iron in the slag phase before reduction, was maximal (about 90 pct) in the 20 mass pct CaO system. Various types of solid compounds, including Mg2SiO4 and Ca2SiO4, were precipitated in slags during the FeO reduction process, and these compounds strongly affected the reduction kinetics of FeO as well as iron recovery. Iron recovery was the greatest in the 20 mass pct CaO system because no solid compounds formed in this system, resulting in a highly fluid slag. This fluid slag allowed iron droplets to fall rapidly with high terminal velocity to the bottom of the crucible. A linear relationship between the mass transfer coefficient of FeO considering slag foaming and foam stability was obtained, from which we concluded that the mass transfer of FeO in slag was effectively promoted not only by gas evolution due to reduction reactions but also by foamy slag containing solid compounds. However, the reduced iron droplets were finely dispersed in foamy and viscous slags, making actual iron recovery a challenge.  相似文献   

15.
The results of isothermally conducted reduction tests on the calcium ferrites CF2+F (= 20 mol. % CaO), CF2 (= 35 mol. % CaO), CF (= 50 mol. % CaO) and C2F (= 66.7 mol. % CaO) with CO/CO2-bearing gases of changing composition in the temperature range between 700 and 1100°C lead both to a plot of the specimen's weight loss as a function of the test duration with the reduction potential CO'2 of the inlet gases as parameters, and to a preciser determination of the reduction stages by means of a plot of the reduced iron oxide oxygen as a function of the CO'2 concentration of the reducing gas. The weight losses are attributable to the three-phase equilibria with the ternary compounds CWF and CW3F contained in the Fe-Fe2O3-CaO phase diagram. Further evaluation taking account of temperature-dependent reduction reactions leads, on the one hand, to a complete reduction diagram for iron oxides with lime in the form of log CO2/CO as a function of MT with largely linear equilibrium curves and, on the other hand, to the familiar Baur-Glaessner diagram, the reduction potential CO'2 as a function of temperature. The main finding compared with previous literature is the existence of the ternary ferrite CW3F extending into the liquid phase, and the fresh determination of the temperatures for the four-phase equilibria in the Fe-Fe2O3-CaO system below 1100°C.  相似文献   

16.
The effects of different types of reducing gas on swelling and iron whisker formation during the reduction of iron oxide compacts were investigated. The compacts sintered in air at 1273 K were reduced at 1173 K in different reducing atmospheres. The results indicated that catastrophic swelling can happen in CO but not when H2 is present in the reducing gas mixture. Scanning electron microscope (SEM) micrographs showed that catastrophic swelling was caused by a large amount of long iron whiskers formed during the reduction. The presence of N2 and CO2 in CO changed the amount of long iron whiskers and its distribution, which determined the extent of swelling.  相似文献   

17.
Kinetics of the reaction of lead slags (PbO-CaO-SiO2-FeO x -MgO) with CO-CO2 gas mixtures was studied by monitoring the changes in the slag composition when a stream of CO-CO2 gas mixture was blown on the surface of thin layers of slags (3 to 10 mm) at temperatures in the range of 1453 K to 1593 K (1180 °C to 1320 °C). These measurements were carried out under conditions where mass transfer in the gas phase was not the rate-limiting step and the reduction rates were insensitive to factors affecting mass transfer in the slag phase. The results show simultaneous reduction of PbO and Fe2O3 in the slag. The measured specific rate of oxygen removal from the melts varied from about 1 × 10?6 to 4 × 10?5 mol O cm?2 s?1 and was strongly dependent on the slag chemistry and its oxidation state, partial pressure of CO in the reaction gas mixture, and temperature. The deduced apparent first-order rate constant increased with increasing iron oxide content, oxidation state of the slag, and temperature. The results indicate that under the employed experimental conditions, the rate of formation of CO2 at the gas-slag interface is likely to be the rate-limiting step.  相似文献   

18.
Pure nanocrystalline hematite (40 to 100 nm) compacts were prepared and sintered at various temperatures (300 °C to 600 °C) and then reduced with 100 pct H2 at 500 °C. On the other hand, fired compacts at 500 °C were reduced with a H2-Ar gas mixture containing different concentration of hydrogen (100, 75, 50, and 25 pct) at 500 °C using thermogravimetric techniques. Nanocrystalline Fe2O3 compacts were characterized before and after reduction with X-ray diffraction, scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and reflected light microscope. It was found that the fired compacts at 400 °C to 600 °C have relatively faster reaction behaviors compared to that at lower firing temperature 300 °C. By decreasing the firing temperature to 300 °C, partial sintering with grain growth was observed clearly during reduction. Also, it was found that the reduction rate increased with increasing hydrogen content in the reducing gas. Comparatively, grain growth and partial coalescence took place during reduction with 25 pct H2 due to long reaction time.
M. BAHGAT (Researcher)Email:
  相似文献   

19.
This study presents a new technique that uses high-temperature chloridizing -reduction-magnetic separation to recover iron from pyrite cinder containing non-ferrous metals. The effects of the reduction temperature, reduction time, and chlorinating agent dosage were investigated. The optimized process parameters were proposed as the following: CaCl2 dosage of 2 pct, chloridizing at 1398 K (1125 °C) for 10 minutes, reducing at 1323 K (1050 °C) for 80 minutes, grinding to a particle size of 78.8 pct less than 45 μm, and magnetic field intensity of 73 mT. Under the optimized conditions, the Cu, Pb, and Zn removal rates were 45.2, 99.2, and 89.1 pct, respectively. The iron content of the magnetic concentrate was 90.6 pct, and the iron recovery rate was 94.8 pct. Furthermore, the reduction behavior and separation mechanism were determined based on microstructure and phase change analyses using X-ray powder diffraction, scanning electron microscope, and optical microscopy.  相似文献   

20.
The internal reduction of high-grade granular hematite ore in hydrogen and carbon monoxide, and also the internal oxidation of porous iron granules in CO2-CO mixtures have been investigated. To assist the interpretation of the rate data for porous iron and iron oxides, rate measurements have been made also with dense wustite, previously grown on iron by oxidation. The iron formed by reduction of dense wustite is porous, similar to that observed when porous hematite is reduced. It is found that the rate of dissociation or formation of water vapor or carbon dioxide on the iron surface is about an order of magnitude greater than that on the surface of wustite. The results of the previous investigations using dense iron and wustite are in general accord with the present findings. The rate of reduction of hematite increases with increasing pore surface area of the reduced oxide. The results indicate that the rate of reduction of granules is controlled primarily by the formation of H2O or CO2 on the pore walls of wustite. The specific rate constants evaluated from internal reduction, using the total pore surface area, are about 1/50 to 1/100 of those for dense wustite. These findings indicate that with porous wustite or iron, the effective pore surface area utilized is about 1 to 2 pct of the total pore surface area. The rate of reduction in H2-CO mixtures is in accord with that derived from the rate constants for reduction in H2 and CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号