首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peng Cheng  Hongbin Ma 《传热工程》2013,34(11-12):1037-1046
A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the system multidegree oscillation of vapor bubbles and liquid plugs, including the effects of filling ratio, operating temperature, gravitational force, and temperature difference between the evaporator and condenser. The model shows that the average velocity of liquid slugs is determined by the temperature difference between the evaporator and condenser. As the turn number increases, the temperature difference for the system to start the oscillating motion decreases. Increasing the bubble number will make the system more unstable and the system can be easily started up. The existence of gravity at the bottom heating mode will make the system easily produce the oscillating motion and decrease the temperature difference as well. Results presented here will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.  相似文献   

2.
A simultaneous visualization and measurement study has been carried out to investigate the start-up, heat transfer and flow characteristics of three silicon-based micro pulsating heat pipes (MPHPs) with the trapezoidal cross-section having hydraulic diameters of 251 μm (#1), 352 μm (#2) and 394 μm (#3), respectively. Experiments were performed under different working fluids, filling ratios, inclination angles (bottom heating mode) and heating power inputs. It is found that (1) the silicon-based MPHPs could start up within 200 s when charged with R113 or FC-72, but they failed to start up at all inclination angle when charged with water or ethanol having lower (dP/dT)sat, higher viscosity, higher latent heat and higher surface tension at the same temperature. During the start-up period, no obvious nucleation was observed. After the start-up period, MPHPs entered the operation period. The silicon-based MPHP could operate normally even at a Bond number of 0.26 and a hydraulic diameter of 251 μm, both smaller than the corresponding values in literatures; (2) the thermal performance of MPHPs depends greatly on the type of working fluid, filling ratio and inclination angle. At the lower power input, MPHPs charged with R113 showed better thermal performance than that charged with FC-72, however, the latter exceeded the former at the higher power input. For the same working fluid, there existed an optimal filling ratio corresponding to the best thermal performance of MPHPs, which was about 52%, 55% and 47% for MPHPs #1, #2 and #3 at the vertical orientation (90°), respectively. When the MPHPs turned from the vertical to the horizontal orientation, the thermal performance tended to be decreased, indicating that the gravity effect cannot be ignored in these silicon-based MPHPs. In MPHP #3 at the inclination angle from 70° to 90°, there appeared a special thermal resistance curve with two local maximum points, which is absent in the traditional PHPs; (3) in the operation period of larger MPHP #3, nucleation boiling, bulk circulation and injection flow were all observed, while these flow patterns were absent in the smaller MPHPs #1 and #2. Intense liquid film evaporation, instead of bubbles’ generation and expansion which usually activated the oscillation flow in macro-PHPs, drove the two-phase flow in the smaller MPHPs #1 and #2.  相似文献   

3.
实验选用外径为4mm、内径为2mm的铜质脉动热管研究了氧化石墨烯对以去离子水和体积分数为50%的乙醇溶液为工质的脉动热管传热性能的影响。实验分别采用加有少量氧化石墨烯的去离子水溶液(简称氧化石墨烯水溶液)和体积分数为50%的乙醇溶液(简称氧化石墨烯乙醇溶液),氧化石墨烯质量分数均为0.03%。实验发现:氧化石墨烯对以去离子水为工质的脉动热管传热性能具有强化作用,对以体积分数为50%的乙醇溶液为工质的脉动热管传热性能的影响较差,但都和脉动热管的加热功率密切相关。对于以去离子水为工质的脉动热管,在加热功率低于20W时,氧化石墨烯对脉动热管的强化作用较弱;当加热功率在30~60W之间时,氧化石墨烯对脉动热管的强化作用较强,在3.71~11.33%之间,且强化作用随加热功率的增大呈逐渐增强趋势;但随着功率继续增大,氧化石墨烯的强化作用逐渐减弱,当加热功率达到80W后,热管传热性能减弱,原因可能是氧化石墨烯颗粒出现了沉降现象。  相似文献   

4.
设计了以铝为管材、丙酮为传热工质的无芯环路热管。其蒸发段采用加热带加热,冷凝段用风冷降温。热管依靠蒸发压头使工质循环,并依靠重力作用,使冷凝液回流到蒸发段。搭建试验台并研究了不同加热功率下充液率对无芯环路热管的传热温差、传热量、热效率、热阻和当量导热系数的影响。结果表明:加热功率为150.00 W、充液率为30%时,无芯环路热管的均温性最好;传热温差和热阻均最小,分别为6.75℃、0.045 K/W。传热量132.00 W、热效率0.88、当量导热系数168 125 W/(m·K),均达到最大值。所以,该无芯环路热管在本实验研究范围内的最佳工作条件为加热功率150.00 W、充液率30%。  相似文献   

5.
The effects of different refrigerants on heat transfer performance of pulsating heat pipe(PHP) are investigated experimentally.The working temperature of pulsating heat pipe is kept in the range of 20℃-50℃.The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min,when heating power is in the range of 10W-100W.The startup time decreases with heating power.Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios.Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a.It indicates that the heat transfer ability of R134a is better.In addition,a correlation to predict thermal resistance of PHP with refrigerants was suggested.  相似文献   

6.
The operating mechanism of the pulsating heat pipe (PHP) is not well understood and the present technology cannot predict required design parameters for a given task. The aim of research work presented in this paper is to better understand the operation regimes of the PHP through experimental investigations. A series of experiments were conducted on a closed loop PHP with 5 turns made of copper capillary tube of 2 mm in inner diameter. Two different working fluids viz. ethanol and acetone were employed. The operating characteristics were studied for the variation of heat input, filling ratio (FR) and inclination angle of the tested device. The results strongly demonstrate the effect of the filling ratio of the working fluid on the operational stability and heat transfer capability of the device. Important insight into the operational characteristics of PHP has been obtained.  相似文献   

7.
Using water or acetone as the working fluid, the thermal performance of a three-dimensional flat-plate oscillating heat pipe (3D FP-OHP) with staggered microchannels was experimentally investigated by varying heating area, cooling temperature and operating orientation. It was found that when the heating area is larger at the same input power, the heat pipe is less orientation-dependent. When the heating area was decreased, to form a localized heating condition and higher heat flux, the thermal resistance and peak-to-peak amplitudes of temperature oscillations in the evaporator increased. The utilization of water as the working fluid generally provided the lowest thermal resistance for all experimental conditions investigated, but – unlike acetone – resulted in more severe temperature fluctuations in the evaporator during localized heating. The 3D FP-OHP, with overall dimensions of 130.18 × 38.10 × 2.86 mm3, demonstrated to efficiently manage heat fluxes as high as approximately 300 W/cm2 at a total heat load of 300 W.  相似文献   

8.
Pulsating heat pipes are complex heat transfer devices, and their optimum thermal performance is largely dependent on different parameters. In this paper, in order to investigate these parameters, first a closed-loop pulsating heat pipe (CLPHP) was designed and manufactured. The CLPHP was made of copper tubes with internal diameters of 1.8 mm. The lengths of the evaporator, adiabatic, and condenser sections were 60, 150, and 60 mm, respectively. Afterward, the effect of various parameters, including the working fluid (water and ethanol), the volumetric filling ratio (30%, 40%, 50%, 70%, 80%), and the input heat power (5 to 70 W), on the thermal performance of the CLPHP was investigated experimentally. The results showed that the manufactured CLPHP has the best thermal performance for water and ethanol as working fluids when the corresponding filling ratios are 40% and 50%, respectively. Finally, with the available experimental data set of CLPHPs, a power-law correlation based on dimensionless groups was established to predict their input heat flux. Compared with the experimental data, the root-mean-square deviation of the correlation prediction was 19.7%, and 88.6% of the deviations were within ± 30%.  相似文献   

9.
振荡热管的传热受许多因素的影响,其传热性能与因素间的关系是复杂和非线性的。采用统计方法分析铜一水闭合回路振荡热管传热性能与充液率、倾角、热量输入间关系。首先应用中心复合设计对试验进行安排,然后采用最小二乘法拟合试验变量与响应间关系,最后采用方差分析研究3个因素及其交互影响的程度。结果显示:二阶方程模型较好地反映了传热功率与影响因素间的关系;3个因素对传热功率的影响都是显著的,其中倾角的影响最为显著,但它们的交互影响不明显;在研究的范围内,最佳充液率和最佳倾角随加热水流量的增大均有所增加。  相似文献   

10.
A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells.  相似文献   

11.
The experimental study was performed on five eccentric radial heat pipes with two outer-tube diameters.The test range can be given as follows,working fluid filling ratio Ω=44%~83%,heat flux q=10000W/m2~32000W/m2,and working temperature tv=50 ℃~120 ℃.The correlations between radial heat pipe heat transfer performance and filling ratio,heat flux,working temperature were studied in the experiment.Based on linear regression of experimental data,the relationship between heat pipe equivalent heat resistance R and working temperature tv,heat flux q and filling ratio Ω was obtained.  相似文献   

12.
Micro heat pipes(MHP) cooling is one of the most efficient solutions to radiate heat for high heat flux electronic components in data centers. It is necessary to improve heat transfer performance of microgroove back plate heat pipes. This paper discusses about influence on thermal resistance through experiments and numerical simulation with different working fluids, filling ratio and heat power. Thermal resistance of the CO_2 filled heat pipe is 14.8% lower than the acetone filled heat pipe. In the meantime, at the best filling ratio of 40%, the CO_2 filled heat pipe has the optimal heat transfer behavior with the smallest thermal resistance of 0.123 K/W. The thermal resistance continues to decline but the magnitude of decreases is going to be minor. In addition, this paper illustrates methods about how to enhance heat pipe performance from working fluids, filling ratio and heat power, which provides a theoretical basis for practical applications.  相似文献   

13.
An experimental investigation was performed on the thermal performance of an oscillating heat pipe (OHP) charged with base water and spherical Al2O3 particles of 56 nm in diameter. The effects of filling ratios, mass fractions of alumina particles, and power inputs on the total thermal resistance of the OHP were investigated. Experimental results showed that the alumina nanofluids significantly improved the thermal performance of the OHP, with an optimal mass fraction of 0.9 wt.% for maximal heat transfer enhancement. Compared with pure water, the maximal thermal resistance was decreased by 0.14 °C/W (or 32.5%) when the power input was 58.8 W at 70% filling ratio and 0.9% mass fraction. By examining the inner wall samples, it was found that the nanoparticle settlement mainly took place at the evaporator. The change of surface condition at the evaporator due to nanoparticle settlement was found to be the major reason for the enhanced thermal performance of the alumina nanofluid-charged OHP.  相似文献   

14.
A theoretical analysis is conducted to determine the primary factors affecting the startup characteristics of a pulsating heat pipe. It is found that the wall surface condition, evaporation in the heating section, superheat, bubble growth, and vapor bubbles trapped in cavities at the capillary inner wall affect the startup of oscillating motion in the pulsating heat pipe. The required superheat and heat flux level for the startup of oscillating motions in a pulsating heat pipe depend on the cavity size of the inner wall surface and the naturally-formed vapor bubbles and their shapes. When the capillary inner surface is coated or fabricated with cavities or roughness, the pulsating heat pipe can be readily started up. And it is found that the working fluid significantly affects the startup characteristics of a pulsating heat pipe. The results presented here can result in a better understanding of the startup operation of a pulsating heat pipe.  相似文献   

15.
This paper presents the performance of a wire-on-tube heat exchanger of which the wire is an oscillating heat pipe. The experiments for this heat exchanger were performed in a wind tunnel by exchanging heat between hot water flowing inside the heat exchanger tubes and air stream flowing across the external surface. R123, methanol and acetone were selected as working fluids of the oscillating heat pipe. The inlet water temperature was varied from 45 to 85 °C while the inlet air temperature was kept constant at 25 °C.  相似文献   

16.
联箱式分离型热管的多支管并联可能导致流量分配不均,造成部分管道干涸,降低换热效果。搭建了7根管道并联的U型联箱式分离型热管实验平台,以R134a为工质,在800~2 200 W加热功率下,分析热管高效工作的充液率上下限、最佳充液率、热管系统换热特性及管道流量分配。结果表明:热管在充液率为31%~46%时可正常工作,最佳充液率约为42%;确认了各换热支管出现的流量分配不均匀特征,最靠近入口的分支管换热性能最佳,第4~6根换热管流量分配最少、性能最差。  相似文献   

17.
In recent years, developing an energy efficient conventional heat pipe is more important because of the development of electronics and computer industries. To enhance the thermal performance of heat pipe, different nanofluids have been widely used. In this paper, an experimental investigation of heat transfer performance of heat pipe has been conducted using three different working fluids such as DI water, CuO nanofluid and TiO2 nanofluid. The heat pipe used in this study is made up of copper layered with two layers of screen mesh wick for better capillary action. The Parameters considered in this study are heat input, angle of inclination and evaporator fill ratio. The concentration of nanoparticle used in this study is of 1.0 wt.%. From the experimental results, comparisons of thermal performance were made between the heat pipes using various working fluids. Among various fill ratio charged, the heat pipe shows good thermal performance when it is operated at 75% fill ratio for all working fluids. However, the heat pipe operated with CuO nanofluid showed higher results compared with TiO2 nanofluid and DI water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
混合工质可为振荡热管带来独特的传热性能.比较甲醇、乙醇纯工质以及甲醇-乙醇混合工质振荡热管在不同充液率时的热阻随加热功率的变化情况,结果发现:在小充液率(45%)时甲醇-乙醇混合工质和乙醇振荡热管开始烧干时的加热功率高于甲醇工质振荡热管;在加热功率不是很大(低于65W)和大充液率(62%~90%)时,甲醇以及甲醇-乙醇混合工质振荡热管的传热性能优于乙醇振荡热管;在大加热功率(高于65W)和大充液率(62%~90%)时甲醇以及甲醇-乙醇混合工质振荡热管的热阻十分接近,均低于乙醇工质振荡热管的热阻,且热阻随着充液率的增加曲线变化越来越平缓.  相似文献   

19.
Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fall ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.  相似文献   

20.
为了研究无机传热元件的启动过程,采用无机传热元件实验装置,测试了不同倾斜角度、加热水入口温度和加热段冷却段长度比下光管式无机传热元件的启动性能。实验结果表明:无机传热元件在倾角为30°、60°和90°时均具有良好的启动性能,且倾角越大,稳定工作时绝热段管壁温度越高;加热水入口温度越高,无机传热元件稳定工作时的工质温度越高;加热段与冷却段长度比越大,最小启动角越大,启动越困难,在实际应用中,为保证无机传热元件的顺利启动,其安装角度确保大于2°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号