首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
添加剂对堇青石合成温度及热膨胀系数的影响   总被引:1,自引:0,他引:1  
采用煤系高岭土、滑石、镁砂为原料合成堇青石,主要探讨了添加剂对合成堇青石的性能影响。通过X-Ray衍射(XRD)分析,用K值法求算合成堇青石矿物相含量,在保证矿物相含量的前提下,探讨添加剂对热膨胀系数的影响。研究结果表明:添加剂的使用均能降低合成堇青石的热膨胀系数,不加添加剂的热膨胀系数为2.04×10-6/℃(20~1100℃);加入碳酸钡热膨胀系数为α=1.84×10-6/℃(20~1100℃);加入碳酸锂热膨胀系数为α=1.86×10-6/℃(20~1100℃)。  相似文献   

2.
崔素芬 《耐火与石灰》1998,23(11):46-49
指出了用国内原料可以制得符合世界领先公司堇青石组成所要求的各种堇青石配料复合物。当主要氧化物和杂质停含量相同时,观察至堇青石性能与配料组成的关系。研究了滑石预烧温度对一步烧结工艺制得堇青石试样性能的影响。  相似文献   

3.
以连云港市东海蛇纹石粉为主要原料,辅以α-Al2O3和石英粉高温合成堇青石,分别配成符合理论组成的配方,SiO2质量分数比理论组成分别多5和10百分点的配方,以及Al2O3质量分数比理论组成分别多5和10百分点的配方,经球磨、造粒、烘干、冷等静压成型后,分别在1 050、1 100、1 150、1 200和1 250℃保温2 h,然后检测试样的显气孔率、体积密度和常温抗折强度,并进行XRD和SEM分析。结果表明:合成的堇青石呈较完整的六方柱状形貌;增大石英粉的添加量能降低材料的合成温度,制得致密度较高的堇青石材料;增大α-Al2O3添加量,合成的堇青石气孔较多,结构疏松。  相似文献   

4.
堇青石的结构状态与合成温度,热膨胀的关系   总被引:9,自引:1,他引:9  
本文用X射线衍射、红外光谱、固体高分辨核磁共振谱和热膨胀仪对在不同温度下合成出的堇青石样品进行了测试研究,以探讨结构状态、合成温度和热膨胀性之间的关系。研究表明,随合成温度的不同其堇青石的结构状态,Al/Si有序化程度也是不同的。而Al/Si有序度最高的样品其热膨胀系数最小。此温度应是堇青石的最佳合成温度。  相似文献   

5.
曾国辉 《佛山陶瓷》2006,16(4):9-11
本文研究了锆英砂、碳酸钡、硅线石、氟化钙四种添加剂及其含量对合成堇青石晶相组成的影响。结果表明:四种添加剂的加入均提高了堇青石的含量,且加入量都有一最佳值,分别为锆英砂2wt%、碳酸钡3wt%、硅线石2wt%、氟化钙2wt%。  相似文献   

6.
高岭土与氢氧化镁合成高性能堇青石材料   总被引:3,自引:0,他引:3  
本研究采用高岭土和Mg(OH) 2 在常压氧化气氛 13 5 0℃~ 14 0 0℃合成高性能的堇青石陶瓷材料 ,热膨胀系数为 1.5 2× 10 -6/℃(10 0 0℃ )。  相似文献   

7.
低温合成堇青石   总被引:3,自引:0,他引:3  
本研究采用废玻璃纤维和高纯Al_2O_3、SiO_2、MgO,在常压下于<1200℃,4~8h人工合成高纯堇青石。废玻璃纤维中的CaO、Fe_2O_3、R_2O能溶入堇青石的晶体结构,并可有效地扩大烧结范围,降低热膨胀系数。讨论了试样的配方组成、合成温度、保温时间和冷却条件等对堇青石的合成量和晶粒大小的影响。  相似文献   

8.
堇青石的合成及应用   总被引:16,自引:1,他引:16  
本文在查阅大量文献的基础上,归纳了堇青石的合成方法及在工业上的应用.采用天然原料的固相合成仍是合成堇青石的主要方法,玻璃反玻化可获得高强致密的堇青石基微晶玻璃,而溶胶凝胶法合成堇青石将有广阔的发展前景.  相似文献   

9.
以苏州土52.3%(质量分数,下同),滑石35.5%,工业氧化铝12.2%为基本配比,合成堇青石材料。分别考察了晶核剂、气孔率、原料预煅烧和急冷处理等因素对合成堇青石材料热膨胀系数的影响。晶核剂采用堇青石熟料,外加量(w)分别为5%、10%、15%、20%、25%和30%;成孔剂采用磨细的面包渣,加入量(体积分数)分别为5%、8%、10%、15%和20%;滑石的预煅烧温度选定1000℃,研究滑石是否煅烧对合成堇青石材料性能的影响。结果表明:适量堇青石熟料在烧成反应中可作为晶种促进堇青石晶核的形成;一定数量均匀分布的小气孔对降低材料的热膨胀系数有利,但气孔率太高反而影响材料性能;通过对滑石的预煅烧试验,证明对滑石进行1000℃的预煅烧有利于降低热膨胀系数;对于急冷的处理方法,提出了与前人相反的观点,认为由于配料组成的差异,急冷未必能降低材料的热膨胀系数,当玻璃相组成为普通硅酸盐玻璃时,急冷的方法反而会增大合成堇青石材料的热膨胀系数。  相似文献   

10.
温度对合成堇青石—莫来石复相材料的影响   总被引:3,自引:0,他引:3  
本文用溶胶-凝胶法合成的二氧化硅、硝酸铝和硝酸镁合成堇青石-莫来石复相材料,研究了温度对合成复合的影响。  相似文献   

11.
1 热膨胀系数对石墨电极和接头来说,热膨胀系数(CTE)是一个很重要的质量指标。电极石墨具有很强的各向异性,它们的纵向CTE和横向CTE大小不同,因而在这两个方向上它们的膨胀行为也不同。石墨电极相关标准规定的CTE指标是指纵向CTE值,其数值是按照GB3074.4—82[1]使用石英膨胀仪测定的,测试温度范围为100~600℃,计算公式为[2]:α=ΔL/(K×L0×Δt) 修正系数式中:ΔL———试样在100~600℃温度区间的膨胀量,mm;L0———试样在室温时的长度,mm;Δt———温升范围,即600℃-100℃=500℃;K———膨胀仪放大倍数。…  相似文献   

12.
吴清仁  奚同庚 《陶瓷学报》1997,18(3):141-144
用稳态法研究岩矿棉隔热材料热系数与密度及温度的关系,结果表明,在一定的工艺条件下,对于化学组成稳定确定的岩矿棉隔热材料,在一个大气压及确定的温度下,在80-100kg/m^3的密度范围将出现导热系数最小值;其导热系数随着温度的增加而非线性地增大,并从理论上提高其经济性的途径,这为陶瓷窑炉保温结构的热设计提供了科学依据。  相似文献   

13.
测定了高密度聚乙烯(HDPE)、木粉及HDPE/木粉混合物与钢板在20℃下的摩擦系数,并测定了HDPE/木粉混合物在不同温度下与钢板的摩擦系数,分析了摩擦系数对木塑复合材料挤出加工的影响,为深入开展木塑复合材料的挤出加工研究提供了实际可靠数据.  相似文献   

14.
变温条件下木塑原材料与金属滑动摩擦系数的测定与分析   总被引:1,自引:0,他引:1  
利用滑动摩擦系数测定装置测定了木塑复合材料常用物料--聚丙烯(PP)粒料、聚氯乙烯(PVC)粉料、木粉,以及不同质量比的PVC/木粉混合物在Q235钢板和不锈钢板上不同温度时的滑动摩擦角,计算出了相应的摩擦系数,分析了温度对塑料-金属的摩擦系数的影响.结果表明,PP粒料的摩擦系数小于PVC和木粉的摩擦系数;温度对PP粒...  相似文献   

15.
The reversible thermal expansion from 15–1000°C was measured for kaolin, siliceous and aluminous fire clays, quartzite, alumina, magnesia, and carborundum, after preliminary burnings at cones 06, 9, 14 and 20, and as well as for English commercial silica bricks before and after use in a coke oven and the roof of a steel furnace. Kaolin and bauxitic fire clay after calcination have a regular reversible thermal expansion which does not vary much with the temperature of calcination. Siliceous fire clays, after calcination at cone 06 (980°C) or cone 9 (1280°C) display irregularities (departures from uniformity) in their expansion. Between 500° and 600°C they show a large expansion due to contained quartz and on cooling the contraction in that region is larger than the corresponding expansion. Moreover, the expansion between 100° and 250°C after being fired to cone 9 (1280°C) exceeds the average. After calcination at higher temperatures, cone 14 (1410°C) or cone 20 (1530°C). these materials gradually lose these peculiarities until on incipient vitrification a linear expansion similar to that of kaolin is attained. This change is due to the destruction of quartz by its interaction with the clay material and fluxes; it takes place most easily in a fine-grained, rather friable clay such as ball clay. The previous thermal treatment necessary for a particular clay in order to obtain regular expansion in use can only be determined by trial. It can be stated with confidence that in such a piece of apparatus as a glass pot or crucible, a distinct gain will result from maintenance at a high temperature for some time before use, but that the red heat of an ordinary pot arch is useless for the purpose. An increase in the porosity of a fire clay was accompanied by a corresponding decrease in expansion between 15° and 1000°C until a porosity of 50% was attained. Further increase in porosity produced very little change in the expansion. No irregularities in expansion were shown by magnesia brick, carborundum, or alumina bonded with 10% of ball clay. Welsh quartzite with lime bond, either unfired or after burning at cone 06, had a large expansion to 550 °C and a much larger expansion from 550–600 °C due to the inversion of α to β quartz while from 600–1000°C a slight contraction took place. Firing to cone 9 converted part of the quartz into cristobalite, thus increasing the expansion from 200–250°C. This conversion was considerably increased on burning for two hours at cone 14, which greatly reduced the expansion from 550–600°C with a corresponding increase of that from 200–250°C. The conversion of the quartz into cristobalite was completed by a further heating for two hours at cone 20. Determinations of refractive indices and specific gravities confirmed these results. Flint inverted to cristobalite with greater ease than quartz. Commercial silica brick consisted chiefly of cristobalite and unconverted quartz and showed a large expansion up to 300°C, followed by a considerably smaller but regular expansion to 550°C. From 550° to 600°C the rate of expansion was considerably increased, but above 600°C the change in dimensions was small. The innermost exposed layer of a silica brick after use in a coke oven was an impure glass with a steady expansion, but only half as large as that of the layers of brick behind, which was made for shelling away. A silica brick after use in a steel furnace was divided into four layers. The layer exposed to the furnace heat was practically all cristobalite and silicates, the next layer the same, the third layer showed some α to β quartz expansion as well as the α to β cristobalite expansion, while the fourth (outermost) layer exposed to air was similar to the brick before use. In these bricks exposure to high temperature had evidently completed the change from quartz to cristobalite which had been largely effected in the kiln during manufacture. Little or no tridymite had formed. The reversible thermal expansion from 15–1000°C of the commercial silica brick examined was 1.1 to 1.3%, about double that of fire clay brick.  相似文献   

16.
分别采用热膨胀仪和激光脉冲热导仪测量了2维、2.5维和3维纤维编织结构的碳纤维增强碳化硅(carbon fiber reinforced silicon carbide,C/SiC)复合材料从室温到1 400℃温度范围内纵向和横向热膨胀系数,以及厚度方向的热扩散系数.用扫描电镜、光学显微镜观察了样品的微结构.结果表明:低温段(700℃以下),3种C/SiC的纵向和横向热膨胀系数均随温度的升高而缓慢增大,并在700℃之后出现不同程度的波动;高温段(700℃以上),它们的纵向热膨胀系数和2维C/SiC的横向热膨胀系数随温度的升高而减小,而2.5维和3维C/SiC的横向热膨胀系数则随着温度的升高而迅速增大.三者厚度方向的热扩散系数均随温度的升高而减小,3维C/SiC的热扩散系数最大,分别是2.5维C/SiC和2维C/SiC的1~1.2和1.4~2倍.  相似文献   

17.
用累托石和滑石粉合成堇青石的研究   总被引:6,自引:2,他引:6  
堇青石是一种用途广泛的低膨胀材料。利用具有特殊结构的累托石矿物,添加滑石粉成功合成优质堇青石。通过测定样品的吸水率、气孔率、体积密度及热膨胀系数等,并配以XRD,SEM等测试手段,系统研究了其合成工艺。结果表明:利用累托石可以在较低的温度下和较宽的温度范围内合成堇青石。  相似文献   

18.
用X射线衍射、差示扫描量热法和热膨胀系数测试研究了BaO-Al2O3-SiO2(BAS)系微晶玻璃的不同晶化时间对其相组成和热膨胀系数的影响.结果表明:在850 ℃,BAS玻璃快速晶化析出六方钡长石;随着晶化时间的延长,六方钡长石逐渐向单斜钡长石转变;当晶化时间为24 h时,六方钡长石完全转变为单斜钡长石.微晶玻璃的相组成与热膨胀系数的关系近似满足两相模型,可通过改变晶化时间来控制相组成,方便的获得热膨胀系数在(4~8.75)×10-6/℃范围内可调整的BAS系微晶玻璃.  相似文献   

19.
不同结构态的堇青石的合成   总被引:4,自引:1,他引:4  
张振禹  耿建刚 《中国陶瓷》1997,33(4):3-4,28
本文论述了堇青石的两种同质多相,即低温堇青石和高温堇青石的合成工艺。应用烧结法成功地合成了高纯度低温堇青石。讨论了添加剂对于堇青石合成的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号