首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究内爆作用下不同类型填充墙对RC框架结构的影响,减轻RC框架结构在爆炸荷载作用下的破坏程度,采用ANSYS/LS-DYNA软件对已有的RC框架结构、碳纤维布加固砌块填充墙爆炸试验进行数值模拟。通过模拟结果和试验结果的对比分析,验证了采用的数值模拟方法及参数设置是合理和适用的。在此基础上,通过数值模拟研究2层L型RC框架结构在相同内爆条件下,分别设置普通混凝土砌块填充墙、碳纤维布加固砌块填充墙、加固泄爆组合填充墙时构件的损坏程度。研究结果表明:在相同内爆作用下,设置不同类型填充墙的RC框架结构的破坏程度和破坏形态有明显差异,填充墙体对内爆作用下RC框架结构的影响不容忽视;全面采用碳纤维布加固砌块填充墙虽可减少爆炸引起的墙体碎片飞溅,但会使内爆作用下的RC框架结构产生较为严重的破坏,顾此失彼;与其他两种填充墙相比,采用加固泄爆组合填充墙可以有效减轻内爆作用下RC框架结构的破坏程度,减少爆炸引起的墙体碎片飞溅。  相似文献   

2.
为了顺利爆破拆除闹市区地上11层、地下2层、建筑总高50 m,建筑面积约5 000 m2的框架剪力墙结构楼房,根据楼房结构特点和周围环境,选择向南空地定向倒塌的爆破拆除方案。对1~2层剪力墙、楼梯进行局部预拆除;选择三角形爆破切口,采用四通与"大把抓"相结合的复式起爆网路;依据精细设计、精细施工和精细管理的科学方法和理念,采用主动与被动防护相结合的安全技术,有效地控制了爆破振动、塌落振动和爆破飞散物,取得了良好爆破效果。可为类似工程爆破拆除提供参考。  相似文献   

3.
数字图像相关法测量全场位移和应变是一种新的实验力学方法.该测量算法中相关函数和子区大小的选择是影响最终应变测量精度的重要因素.本文采用已知应变变形的仿真散斑图,研究了测量算法中主要相关函数和子区大小在正常光照与高斯不均匀光照条件下,对应变测量精度的影响.得出了不同测量要求下,可选择的相关函数和最佳计算窗口.通过实验验证与分析了此算法的测量精度.研究结果表明,数字图像处理技术测量应变的测试精度满足基本要求.  相似文献   

4.
The detection of crack development in a masonry wall forms an important study for investigating the earthquake resistance capability of the masonry structures. Traditionally, inspecting the structure and documenting the findings were done manually. The procedures are time-consuming, and the results are sometimes inaccurate. Therefore, the digital image correlation (DIC) technique is developed to identify the strain and crack variations. This technique is non-destructive for inspecting the whole displacement and strain field. Tests on two masonry wall samples were performed to verify the performance of the digital image correlation method. The phenomena of micro cracks, strain concentration situation and nonuniform deformation distribution which could not have been observed preciously by manual inspection are successfully identified using DIC. The crack formation tendencies on masonry wall can be observed at an earlier stage by this proposed method. These results show a great application potential of the DIC technique for various situations such as inspecting shrinkage-induced cracks in fresh concrete, masonry and reinforced concrete structures, and safety of bridges.  相似文献   

5.
G. Govindasamy  M. K. Jain 《Strain》2016,52(3):191-204
Bending of sheet materials is a common forming mode for shaping sheet components. Although many numerical models of bending, both analytical and numerical simulations based, are available in the literature, extensive experimental validations have been rather limited. A new bend test method and complementary three‐dimensional finite element (FE) simulation of the experiments are employed to assess the predictions from an advanced analytical and FE model of pure bending of aluminium sheet materials. The experimental set‐up developed and utilised is an open concept design that allows access to the tensile surface and through‐thickness region in the vicinity of the specimen bend line to continuously record images of the deforming specimen with two cameras. The specimen images are analysed for strains using an online strain mapping system based on digital image correction method. Tangential strain distribution results from the models in terms of material thinning in the bend region are compared with those from the experiments on AA2024 aluminium sheet material by considering the responses from the specimen edges and mid‐width regions at the bend line. Furthermore, the tangential and radial stress distributions on the through‐thickness section of the specimen from the analytical model are compared with those from the FE model. The results from experiments, FE model and analytical model are compared and discussed in the light of the experimental data and the assumptions involved in the development of the models.  相似文献   

6.
李治  原小兰  薛天琦  钱凯 《工程力学》2024,36(4):140-150

为探究不同去柱工况对多层钢框架结构抗连续倒塌性能影响,分别对中柱失效和角柱失效工况的2层2跨钢框架梁-柱子结构进行Pushdown加载试验,研究其在倒塌过程中的抗力曲线和破坏模式。试验结果表明:中柱失效下钢框架主要依靠弯曲机制和悬链线机制抵抗外加荷载,且悬链线机制具有一定的滞后性;而角柱失效下钢框架主要依靠弯曲机制抵抗倒塌,且由于空腹效应的存在,可以有效提高结构的抗倒塌承载力。随后通过有限元软件ANSYS/LS-DYNA对所研究试件进行数值模拟,并对现实场景中可能出现的6种去柱工况分别进行抗连续倒塌分析。通过对比6种去柱工况钢框架结构的抗力曲线和抗倒塌风险可知:不同去柱工况下的钢框架结构水平约束条件不同,从而空腹效应发展也不尽相同;考虑空腹效应并考虑单位面积结构的承载力时,邻角柱失效与邻边柱失效工况下的钢框架结构具有较高的倒塌风险。

  相似文献   

7.
This article presents a methodology to optimise the design of a realistic mechanical test to characterise the material elastic stiffness parameters of an orthotropic PVC foam material in one single test. Two main experimental techniques were used in this study: Digital Image Correlation (DIC) and the Virtual Fields Method (VFM). The actual image recording process was mimicked by numerically generating a series of deformed synthetic images. Subsequent to this, the entire measurement and data processing procedure was simulated by processing the synthetic images using DIC and VFM algorithms. This procedure was used to estimate the uncertainty of the measurements (systematic and random errors) by including the most significant parameters of actual experiments, e.g. the geometric test configuration, the parameters of the DIC process and the noise. By using these parameters as design variables and by defining different error functions as object functions, an optimisation study was performed to minimise the uncertainty of the material parameter identification and to select the optimal test parameters. The confidence intervals of the identified parameters were predicted based on systematic and random errors obtained from the simulations. The simulated experimental results have shown that averaging multiple images can lead to a significant reduction of the random error. An experimental determination of the elastic coefficient of a PVC foam material was conducted using the optimised test parameters obtained from the numerical study. The identified stiffness values matched well with data from previous tests, but even more interesting was the fact that the experimental uncertainty intervals matched reasonably well with the predictions of the simulations, which is a highly original result and probably the main outcome of the present paper.  相似文献   

8.
The fracture behaviour of concrete and reinforced concrete beams under quasi‐static three‐point bending was comprehensively investigated with experiments at laboratory scale. The eight various concrete mixes were tested. The influence of the shape, volume and size of aggregate particles and reinforcement on concrete fracture under bending was studied. Displacements on the surface of concrete beams were measured by means of the digital image correlation (DIC) technique. Attention was paid to the formation of a localized zone and its characteristics. In order to avoid the effect of the search patch size and the cut‐off value at displacement and strain profiles, a consistent method was proposed to determine uniformly and accurately the width of a localized zone. Measured surface displacements from DIC were fitted by the error function ERF, whereas surface strains calculated from displacements were fitted by the usual normal distribution (Gauss) function. The width of a localized zone preceding a macro‐crack grew strongly with increasing maximum aggregate size and slightly with diminishing aggregate volume. It did not depend on the aggregate roughness and reinforcement presence.  相似文献   

9.
Full‐field identification methods are increasingly used to adequately identify constitutive parameters to describe the mechanical behavior of materials. This paper investigates the more recently introduced one‐step method of integrated digital image correlation (IDIC) with respect to the most commonly used two‐step method of finite element model updating (FEMU), which uses a subset‐based DIC algorithm. To make the comparison as objective as possible, both methods are implemented in the most equivalent manner and use the same FE model. Various virtual test cases are studied to assess the performance of both methods when subjected to different error sources: (1) systematic errors, (2) poor initial guesses for the constitutive parameters, (3) image noise, (4) constitutive model errors, and (5) experimental errors. Results show that, despite the mathematical similarity of both methods, IDIC produces less erroneous and more reliable results than FEMU, particularly for more challenging test cases exhibiting small displacements, complex kinematics, misalignment of the specimen, and image noise. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
《Strain》2018,54(5)
In a previous paper, Campello et al. presented a combined experimental/numerical approach to identify the creep behaviour of as‐fabricated Zircaloy‐4 claddings under simulated LOCA conditions. The current paper deals with the uncertainties and errors estimation of the two key methods used to measure the thermal and kinematic full fields during the creep tests: near infrared thermography (NIRT) and two‐dimensional digital image correlation (2D‐DIC). The NIRT uncertainties are evaluated as 0.7% of the actual temperature. They are mainly due to the thermocouple measurements used to calibrate the radiometric model of the NIRT. A combined 2D‐DIC/edge detection approach is proposed to quantify the error related to 2D‐DIC when measuring the ballooning of the tubular specimen. The 2D‐DIC error is evaluated as 0.1% of the actual equivalent strain even for ballooning inducing a radius increase of 20%.  相似文献   

11.
Deformation of a weldment is governed by the mechanical properties of its base metals and fusion zone. In a weldment, the base metals and fusion zone exhibit changing microstructural features with various phases present along the weldment. Specifically, the heat affected zone of a base metal exhibits a heterogeneous microstructure generated during weld thermal cycles and by post-weld heat treatment. As a result, the mechanical properties in a weldment are often non-uniformly distributed. In this study, tensile tests combined with digital image correlation were performed to obtain the non-uniform distributions of the mechanical properties of a weldment composed of P91 and 347H steels. From the experimental tensile tests, it was found that the 347H base metal had significantly distinct mechanical properties compared to the other zones of the weldment. Furthermore, the 347H base metal had the lowest yield stress but the highest strain hardening exponent. Because of its lowest yield stress, the 347H base metal had the highest plastic strain accumulation at any stage of global deformation. However, the strain hardening rate of the P91 base metal enabled it to accumulate the necessary plastic strain to activate its necking first. Therefore, the failure location of the P91-347H weldment was expected to occur at the P91 base metal. A 3D finite element simulation of the tensile deformation of P91-347H weldment also suggested the same. However, from the present experimental observations, one weldment out of three was found to fail unexpectedly at the heat affected zone of the P91 base metal. The reason for this unexpected failure was determined by microscopic analysis to be the presence of a large defect.  相似文献   

12.
M. Grediac  F. Sur 《Strain》2014,50(1):1-27
This paper deals with noise propagation from camera sensor to displacement and strain maps when the grid method is employed to estimate these quantities. It is shown that closed‐form equations can be employed to predict the link between metrological characteristics such as resolution and spatial resolution in displacement and strain maps on the one hand and various quantities characterising grid images such as brightness, contrast and standard deviation of noise on the other hand. Various numerical simulations confirm first the relevance of this approach in the case of an idealised camera sensor impaired by a homoscedastic Gaussian white noise. Actual CCD or CMOS sensors exhibit, however, a heteroscedastic noise. A pre‐processing step is therefore proposed to first stabilise noise variance prior to employing the predictive equations, which provide the resolution in strain and displacement maps due to sensor noise. This step is based on both a modelling of sensor noise and the use of the generalised Anscombe transform to stabilise noise variance. Applying this procedure in the case of a translation test confirms that it is possible to model correctly noise propagation from sensor to displacement and strain maps, and thus also to predict the actual link between resolution, spatial resolution and standard deviation of noise in grid images.  相似文献   

13.
我国目前用爆破法拆除的高层楼房主要是框剪结构。根据同一楼房中框架部分与剪力墙部分的相对位置、倒塌方向选择、前后段起爆时差,对框剪结构楼房爆破效果的影响等进行了分析,给出了楼房爆破切口倾角(闭合角)的经验数据、理论计算方法及确保楼房倒塌的判据,指出了楼房沿其纵向倒塌的难度远大于横向倒塌,并以靖江金都大厦的爆破为例,详细介绍了楼房沿其纵向倾倒时的爆破方案确定、预处理方法、爆破切口要素、立柱的爆破破坏高度、药孔参数、爆破参数、起爆网路等。靖江金都大厦为框剪结构的11层高楼,因环境限制,需要沿其不利于倒塌的纵向倾倒,而剪力墙结构却位于高楼的纵向两端,对该大楼的倒塌带来极大难度,通过精心设计其爆破方案,优化爆破参数,并采取严格的安全技术措施,完全达到了预期的爆破效果。  相似文献   

14.
This study reports on the Heaviside-based digital image correlation (H-DIC) procedure and its application in fracture analysis. This improved DIC procedure was proposed to solve the uncertainty problems at the vicinity of the crack and to evaluate the opening and shear movements of crack lips and the orientations of cracks in the subset. Some tests were conducted to demonstrate the performance of the H-DIC algorithm. An application on argillaceous rock mass exhibiting multiple mixed-mode fractures is shown to validate the efficiency and robustness of the proposed method. This application consisted in processing images acquired from an experimental investigation performed in a gallery front submitted to climatic seasonal variations. The results illustrated how the H-DIC procedure enables to localise and to quantify the opening, shearing and orientation of subpixel cracks. A sensibility study performed on the opening and shear components demonstrated that the precision of crack aperture by H-DIC procedure is close to 0.14 pixel and the spatial resolution is equal to one pixel. Moreover, the crack area was calculated from local apertures on a monitoring duration of 1 year, and a maximum value of 595.8 mm2 in winter was obtained.  相似文献   

15.
目的 从微纳尺度研究X80管线钢微观组织的不均匀性对残余应力分布及释放过程的影响。方法 为了突出微观组织的非均匀特征,将X80管线钢升温到固溶温度(1 200 ℃)后随炉冷却,得到由大量多边形铁素体(PF)和退化珠光体(DP)构成的显微组织。以腐蚀后的自然形貌为散斑模型,采用聚焦离子束技术在不同微观组织内部进行环芯槽的铣削加工,并获取芯柱表面的变形图像,最后通过数字图像相关方法计算芯柱表面的应变演化。同时,利用纳米压痕技术测试不同区域的弹性模量,结合弹性理论计算分析不同组织内部的微观残余应力。结果 微观结构的不均匀性直接影响了残余应力的分布及释放路径。DP组织中的von Mises平均应变约是PF区域的2倍,残余应力主要存在于作为软质相的铁素体基底中。纳米压痕实验结果表明,DP中弹性模量的浮动比PF的更加剧烈。不同铣削深度下的残余应力呈现出非线性特征。当铣削深度达到1.1 μm时,PF和DP区域松弛释放的残余应力分别为232.6 MPa和385.2 MPa。结论 在微观尺度上,不同组织内的残余应力状态存在差异。微观组织在碳化物、结构形貌等方面的非均匀性将引起表面残余应力的梯度分布。  相似文献   

16.
To explore the fracture characteristics of rock under the interaction of fatigue load and creep load, fatigue–creep interactive loading experiments were performed on red sandstone with prefabricated cracks. The crack evolution process and failure mode were analyzed using acoustic emission technology and digital image correlation. The results showed that crack growth mainly occurred in the fatigue loading stage; the crack evolution of the sample could be divided into three stages: nucleation and initiation ( ), stable expansion ( ), and unstable fracture ( ). There were distinct differences in the crack propagation modes of the rock samples with different prefabricated crack angles. The relationship between the crack initiation angle and prefabricated crack angle was analyzed based on the maximum circumferential stress theory. Moreover, with an increase in the prefabricated crack angle, the rock sample gradually changed from compression–shear failure to tension–shear failure.  相似文献   

17.
Fatigue cracks were healed by controlling a high‐density electric current. The changes in the displacement distribution around the crack tip and the stress intensity factor before and after crack healing were evaluated quantitatively with a digital image collation method. According to the results, it was determined that the cracks were closed by approximately 2 to 7 µm in this study. On the other hand, the stress intensity factor decreased or increased depending on the conditions of the crack and the current applied. The physical restriction between the crack surfaces, such as bridging, is important with respect to lowering the stress intensity factor after healing.  相似文献   

18.
The fractional step method (FSM) is an efficient solution technique for the particle finite element method, a Lagrangian‐based approach to simulate fluid–structure interaction (FSI). Despite various refinements, the applicability of the FSM has been limited to low viscosity flow and FSI simulations with a small number of equations along the fluid–structure interface. To overcome these limitations, while incorporating nonlinear response in the structural domain, an FSM that unifies structural and fluid response in the discrete governing equations is developed using the quasi‐incompressible formulation. With this approach, fluid and structural particles do not need to be treated separately, and both domains are unified in the same system of equations. Thus, the equations along the fluid–structure interface do not need to be segregated from the fluid and structural domains. Numerical examples compare the unified FSM with the non‐unified FSM and show that the computational cost of the proposed method overcomes the slow convergence of the non‐unified FSM for high values of viscosity. As opposed to the non‐unified FSM, the number of iterations required for convergence with the unified FSM becomes independent of viscosity and time step, and the simulation run time does not depend on the size of the FSI interface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
F. Pierron 《Strain》2016,52(3):186-190
Recently, a very interesting article was published in Strain where a rigid polyurethane foam specimen was submitted to longitudinal vibrational excitation in the ultrasonic range. The authors showed that it was possible to measure time‐resolved strain response maps by combining digital image correlation and ultra‐high‐speed imaging. The objective of this discussion is to propose further analysis of the data published in that article, showing that it is possible to extract meaningful values for Young's modulus by using the acceleration field in the specimen as a load cell. The aim here is not to provide a complete solution to this problem but to alert the readers on the possibilities offered by this kind of test. This method is an interesting alternative where the energy is input repeatedly instead of in one go as in impact‐based tests. Full‐field vibration measurements have already been used in the past to identify stiffnesses but only in bending and at much lower strain rates. This article shows that the method can be extended to cover a much wider strain rate range. Finally, only global stiffness values were identified then, whereas here, maps of stiffnesses can be derived.  相似文献   

20.
D. Wang  M. Lucas  K. E. Tanner 《Strain》2013,49(5):409-419
The behaviour of the cancellous bone surrogate material, rigid polyurethane foam (PUF), subject to power ultrasonic vibration excitation has been studied, with the purpose of identifying a methodology to investigate the effects that ultrasonic surgical devices have on biological tissue materials. To characterise the vibrational response to ultrasonic excitation, non‐contact measurement of the full in‐plane displacement field of PUF plate specimens was performed by combining the use of an ultra‐high speed camera and 2D digital image correlation. To investigate the thermal response, an infrared camera was used in real time to detect the temperature field. The measured surface displacement and strain fields of the PUF specimens and the thermal response are compared with data from an analytical model, and two different finite element models using Abaqus and PZFlex . The close agreement between calculated and measured data provides initial confidence in the use of the models for predicting the effects of ultrasonic excitation on tissue materials. The measurement data demonstrate the success of the experimental method for measuring vibrational responses in a hard tissue surrogate material at the ultrasonic frequencies associated with power ultrasonic surgical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号