首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用于钢筋混凝土梁的光纤光栅应变传感器   总被引:4,自引:0,他引:4  
在变形测定器中,光纤Bragg光栅被粘贴于内管的两端,这两端的距离确定了传感器的量规长度。为了测量拉应变和压应变,该光纤光栅必须保持处于与可能的最大压应变相等的永久性拉应变。将光纤Bragg光栅贴于H154梁的混凝土表面和H158梁的钢筋表面,以分别检测拉应变和压应变。当钢筋混凝土梁受到千斤顶的加载时,它的应变可由光纤Bragg光栅的反射Bragg波长的偏移量获得。实验表明,作为一种绝对检测器件,光纤Bragg光栅为钢筋混凝土梁提供了有效监测,其中,拉应变~1000me,而压应变~1500me。  相似文献   

2.
《IEEE sensors journal》2009,9(8):936-943
This paper describes a fiber Bragg grating strain sensor interrogation system based on a microelectromechanical systems tunable Fabry–Perot filter. The shift in the Bragg wavelength due to strain applied to a sensor fiber is detected by means of a correlation algorithm which was implemented on an embedded digital signal processor. The instrument has a 70 nm tuning range, allowing multiple strain sensors to be multiplexed on the same fiber. The performance of the interrogator was characterized using an optical fiber containing six grating strain sensors embedded in a fiberglass test specimen. The measured root mean square (RMS) strain error was 1.5 microstrain, corresponding to a 1.2 pm RMS error in the estimated wavelength shift. Strain measurements are produced with an update rate of 39 samples/s.   相似文献   

3.
《Composites Part A》2003,34(3):203-216
Nondestructive evaluation of microfailure mechanisms in two-diameter SiC fibers/epoxy composites is investigated using a directly embedded fiber-optic sensor attached with an acoustic emission piezoelectric (AE-PZT) sensor. Interfacial shear strength by fragmentation test, and optical failure observation inside microcomposite can contribute to analyze two sensors quantitatively. Although fiber Bragg grating (FBG) sensor exhibits sudden wavelength shift due to plastic deformation by larger diameter SiC fiber breakage, AE-PZT monitors much more precise microfailure process, such as the fiber break or matrix cracking. Since the FBG sensor can measure the strain at only a single point, whether it can detect a fiber break in single-fiber composite specimen depends on its proximity to the failure location. In addition, micro-strain measurement at one single point may not provide enough information on the whole microfailure process including multiple fiber breakage and matrix crack. It can be considered that FBG sensor can be somewhat effective in measuring the continuous micro-strain change due to the internal disturbance such as resin curing, whereas AE-PZT sensor can be effective in detecting the microfailure by elastic wave propagation through the composite materials.  相似文献   

4.
经缩尺比例后,大跨度悬索桥模型的构件一般变得很细小,尺寸大的传感器无法或不宜安装在结构模型上,尤其是需作动力试验的模型,附加大量传感器及电缆线的质量、刚度和阻尼会严重影响试验的结果.为解决此问题,该文采用细柔的裸光纤光栅测量直径仅0.5mm细钢丝吊索及其他细小构件的应变.为获得光纤所测应变的传递函数,研制了激振用的光纤...  相似文献   

5.
孙曼  植涌  刘浩吾 《工程力学》2007,24(1):162-166
采用光纤Bragg光栅(FBG)传感器对钢-混凝土组合桥面板模型由加载产生的滑移、掀起(脱空)和裂缝三类损伤进行检测。试验经历了静载、300万次循环疲劳加载和破坏三个阶段。结果表明在静载和疲劳试验阶段未出现滑移、掀起和纵向裂缝,传感器测得FBG布控处的混凝土应变值。破坏阶段中,组合结构相继出现裂缝、滑移和掀起损坏,利用FBG传感器测到发生此三种损坏的临界应变值并追踪其发展。结果表明:光纤Bragg光栅(FBG)传感器能够检测组合结构的断裂损伤,并追踪其发生发展的全过程。该技术对组合结构的健康检测和优化设计是很有用的。  相似文献   

6.
介绍了一种新型的用于纳米坐标测量机的三维微纳米接触触发式测头机构.本测头以灵敏度高、抗干扰性强的布拉格光纤光栅(FBG)为测量的敏感元件,根据FBG对轴向应变变化敏感的特点,开发了一套有效触发测量力小的柔性悬架机构,该机构为三悬丝-六边中心连接体的悬架结构,相间隔的3边延伸悬臂与3根布拉格光纤光栅相连,当测球发生预行程变化时,由测杆带动柔性悬架机构产生偏摆,从而带动3根FBG发生轴向的拉伸或压缩,进而产生传感信号的输出.由于测头结构复位性是衡量测球和工件分离后能否回到初始位置的标准,是测头其他各项指标的基础,因此结合激光干涉仪和精密微动平台,采用光学非接触干涉测量方法对该测头机构的实际复位性能进行了测量.结果表明,测头系统采用15 N的预紧力安装悬丝,可得到较好的复位性和灵敏度,该测头机构复位性精度在20 nm以内,满足微纳米量级高精度测量的需要.  相似文献   

7.
In this work, a cure monitoring system using dielectrometry and a fiber Bragg grating (FBG) sensor, was devised to measure the dissipation factor and thermal residual stress of carbon fiber-reinforced epoxy composite materials. Three rapid-cooling points, which were based on the cure initiation point, were chosen as test variables to investigate the effect of cure cycle on process-induced internal strain. The internal strains generated in the composite specimens were measured using embedded FBG sensors. Three-point bending tests were conducted to investigate the effect of thermal residual stress on the flexural strength of the composite specimens.  相似文献   

8.
环境折射率和环境温度变化是影响光纤应变测量误差的主要因素.本文利用双模光纤纤芯双模式(LP01和LP11)支持特性设计了一款环境折射率不敏感的双模光纤(DMF)长周期光纤光栅LPFG)应变传感器.设计了传感器模型结构,制作了最优化参数的传感器样品.实验测试了DMF-LPFG传感结构对外部环境中应变、温度和折射率的响应....  相似文献   

9.
We describe a genetic algorithm approach to solve an inverse problem in optics, which determines the characteristics of a fiber Bragg grating from its reflected spectrum. The validity of the proposed method is demonstrated by use of a Bragg sensor for the measurement of nonlinear strain acting on a uniaxial aluminum test specimen.  相似文献   

10.
Dennison CR  Wild PM 《Applied optics》2012,51(9):1188-1197
In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the sensor with respect to contact forces. A combination of plane elasticity and strain-optic models is used to predict sensor performance in terms of sensitivity to contact force and axial strain. Model predictions are validated through experimental calibration and indicate contact force, axial strain, and temperature sensitivities of 169.6 pm/(N/mm), 0.01 pm/με, and -1.12 pm/°C in terms of spectral separation. The sensor addresses challenges associated with contact force sensors that are based on FBGs in birefringent fiber, FBGs in conventional optical fiber, and tilted FBGs. Relative to other birefringent fiber sensors, the sensor has contact force sensitivity comparable to the highest sensitivity of commercially available birefringent fibers and, unlike other birefringent fiber sensors, is self-aligning with respect to contact forces. Unlike sensors based on Bragg gratings in conventional fiber and tilted Bragg gratings, the sensor has minimal cosensitivity to both axial strain and changes in temperature.  相似文献   

11.
Damage detection in holed composite laminates using an embedded FBG sensor   总被引:1,自引:0,他引:1  
This paper discusses damage detection in a holed CFRP laminate under static and cyclic loading using an embedded fiber Bragg grating (FBG) sensor. In order to detect the damage extension in the laminate, the change in the spectrum shape was measured using an embedded FBG sensor and was compared with that obtained by numerical simulation. The shape of the reflection spectrum did not change during the cyclic load test; however, it did change with increased strain in the static load test, due to damage around the hole. To clarify this difference, the polished surface of the cross section of the specimen was analyzed. Debonding was observed between the optical fiber and matrix during the cyclic load test. These results lead us to conclude that fatigue damage around a hole in a composite laminate may not be detected with an FBG sensor due to the debondings.  相似文献   

12.
H. P. Wang  X. Li 《Strain》2016,52(6):522-530
Fibre Bragg grating (FBG) sensors have been increasingly adopted to detect the dynamic strain of structures. When the sensor is attached on the surface, adhesive material is employed to assist the installation, which leads to indirect contact of sensing fibre and the monitored structure. To correct the strain transfer error induced by the shear lag effect and improve the measurement accuracy of FBG sensors under dynamic response, strain transfer mechanism of a three‐layered testing model constituted of sensing fibre, adhesive layer and host material has been studied in this paper. Laboratory test on steel beam attached with FBG sensor under fatigue load has been projected to investigate the feasibility of the derived strain transfer formula, and numerical simulation by MATLAB has been used as a supporting tool to offer the reference dynamic strain. Based on the analysis, sensitive parameters that affect the strain transfer coefficient have been discussed to instruct the application design of FBG sensors. Results indicate that strain transfer coefficient under dynamic response is much lower than that in static state, and error modification is particularly significant; in the dynamic testing model, bonded length, shear modulus and thickness of adhesive layer are more sensitive, which should be precisely selected in practical engineering to guarantee the effective strain measurement.  相似文献   

13.
A multiplexed optical fiber Bragg grating sensor system with a measurement bandwidth of up to 200 Hz enabling dynamic loading events, e.g., road traffic, to be observed has been designed, installed, and tested over an 18-month period on a 346-m road bridge in Norway, for design verification and structural integrity monitoring purposes. A network of 32 fiber Bragg sensors was surface bonded along with a corresponding set of resistive strain gauges for comparative tests to be made. The wavelength data were calibrated against two thermally stabilized (/spl sim/0.15 pm) reference gratings, which rejected common mode noise and provided absolute wavelength scaling. These data provides independent strain and temperature information. Long-term test results showed good linearity and repeatability of <10 /spl mu//spl epsiv/ over the test period with a precision of /spl plusmn/5 /spl mu//spl epsiv/ and a resolution of /spl plusmn/1 /spl mu//spl epsiv/. The readings from the FBG sensors were comparable to those from the foil gauge sensors to within /spl plusmn/4 /spl mu//spl epsiv/.  相似文献   

14.
Ren L  Song G  Conditt M  Noble PC  Li H 《Applied optics》2007,46(28):6867-6871
Biomechanical studies often involve measurements of the strains developed in tendons or ligaments in posture or locomotion. Fiber-optic sensors present an attractive option for the measurement of strains in tendons and ligaments because of their low cost, ease of implementation, and increased accuracy compared with other implantable transducers. A new displacement sensor based on a fiber Bragg grating and shape memory alloy technology is proposed for the monitoring of tendon and ligament strains in different postures and in locomotion. After sensor calibration in the laboratory, a comparison of the fiber sensors and traditional camera displacement sensors was carried out to evaluate the performance of the fiber sensor during the application of tension to the Achilles tendon. Additional experiments were performed in cadaver knees to assess the suitability of these fiber sensors to measure ligament deformation in a variety of simulated postures. The results demonstrate that the proposed fiber Bragg grating sensor is a highly accurate, easily implantable, and minimally invasive method of measuring tendon and ligament displacement.  相似文献   

15.
An intracore Bragg grating written on a photosensitive fiber core is used for strain measurement in composite specimens under load. The strain information is directly related to the absolute change in the Bragg-reflected wavelength. Fiber Bragg grating (FBG) sensors (fibers with intracore gratings) are thus sensitive to strain that is caused by changes in temperature as well as to load-induced changes. Thus these sensors can be made to be independent of source intensity variations and losses. FBG sensors used for load-induced strain sensing in composite structures and the effects of temperature on them are discussed. A detailed account of the use of such embedded structures as self-monitoring nondestructive testing devices is given.  相似文献   

16.
Multimode fiber optic Bragg grating sensors for strain and temperature measurements using correlation signal processing methods have been developed. Two multimode Bragg grating sensors were fabricated in 62/125 /spl mu/m graded-index silica multimode fiber; the first sensor was produced by the holographic method and the second sensor by the phase mask technique. The sensors have signal reflectivity of approximately 35% at peak wavelengths of 835 nm and 859 nm, respectively. Strain testing of both sensors has been done from 0 to 1000 /spl mu//spl epsiv/ and the temperature testing from -40 to 80/spl deg/C. Strain and temperature sensitivity values are 0.55 pm//spl mu//spl epsi/ and 6 pm//spl deg/C, respectively. The sensors are being applied in a power-by-light hydraulic valve monitoring system.  相似文献   

17.
内埋的光纤Bragg光栅(FBG)传感器的存活率及测试精度是其在线监测纤维增强树脂基复合材料制备和服役状态的重要前提。采用[9011/011]的碳纤维预浸料铺层方式,在层合板0°和45°方向的典型位置埋入FBG温度和应变传感器,采用模压成型工艺制备复合材料层合板。在异向铺排(光纤光栅方向与碳纤维方向不同)的45°方向光纤光栅传感器内埋于碳纤维预浸料层间的过程中,对其采用4种不同的保护方式。通过对比实验结果发现:当对异向铺排的FBG传感器不采取保护措施时,在加热加压复合材料时光纤光栅容易失活;整层铺设同向预浸料以保护异向铺排的FBG传感器的方式改变了具有特定铺层参数复合材料的力学性能;采用窄长条同向预浸料上下包埋保护FBG传感器的方式增大了应变光栅测量结果的系统误差;采用窄长条同向预浸料上下包埋并在邻近铺层开凹槽的保护方式能明显提高内埋光纤光栅的存活率及测试精度。   相似文献   

18.
The uncertainty of the crack tip position inside composite coupons during a delamination test under variable fracture mode conditions reduces the accuracy of the experimental results. In this work a method is presented where the crack tip position is located using long embedded Fibre Bragg Grating (FBG) sensors together with the Optical Low Coherence Reflectometry (OLCR) technique. With this technique the local Bragg wavelength is measured which then enables to calculate the axial strain profile within the grating. Carbon/epoxy samples are tested under different mode ratios through the standard Mixed-Mode Bending (MMB) test. Embedded long FBG sensors are used to measure the axial strain profile along the whole grating at different stages of the test. The crack tip can be precisely identified with the long embedded FBGs and then checked by means of a visual inspection after complete delamination of the sample. The data indicate that the long FBG sensor detects the crack tip inside the sample at least as precisely as the traditionally performed visual inspections carried out during the test by means of the lateral markings. Numerical simulations using cohesive elements are in good agreement with the experimental data.  相似文献   

19.
Response of fiber Bragg gratings to longitudinal ultrasonic waves   总被引:1,自引:0,他引:1  
In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for meeting specific requirements in terms of field intensity and frequencies.  相似文献   

20.
Abstract: Currently, measuring the local tensile strength in inhomogeneous materials is not standardised, nor accepted techniques are available despite such technique would be beneficial in a variety of technological applications. Thus, this work introduces an innovative method for assessing stress–strain properties at a sub‐millimeter scale and illustrates the potential of the technique by evaluating the strength of a sub‐region in the HAZ from welded steels pipes. The method employs a fully instrumented stage inside a scanning electron microscope that stretches small tensile specimens (2.0 mm × 0.5 mm cross‐section, 12.5 mm gage length) while registering detailed images of the deformed region. The specimens, cut from full‐scale welds, include in their gage length weld metal, base metal and HAZ and have an 85 μm period grid of evaporated lead on their surface to visualise the deformation. Upon straining, local strain is determined by correlating sequential images of the specimen surface with an open source code for particle image velocimetry. The calculated local strain within the HAZ and the load values recorded during testing are converted into a local stress–strain response. The results for two different heat inputs agree with usual, but indirect and less accurate assessments procedures, including local hardness measurements and notched bar testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号