首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface engineering approaches are being increasingly employed for enhancing the effective life of twist drills with a view to reduce machining costs. The electro-spark coating (ESC) technique provides a promising means of depositing wear resistant coatings that can potentially enhance the performance of these tools. However, it is often necessary to also optimize the machining conditions for coated tools to achieve an enhanced tool life. In the present investigation, varying spindle speeds were employed at a fixed vertical feed to evaluate the performance of WC-8Co ESC coated HSS drills in comparison to bare HSS drills. The number of holes drilled before reaching a preset average flank wear (0.5 mm), or catastrophic failure of the drill, was taken as the measure of tool life. The drill flank wear, monitored at regular intervals, as well as the cutting torque and thrust measured for all holes, were considered to be the key criteria for optimizing the cutting conditions. Results indicate that the WC-8Co coated drill tool life can be increased by a factor of more than 5, depending on the machining conditions selected. Furthermore, flank wear of the drill was found to increase rapidly at the end of drill life. Cutting torque data was also found to provide a useful indicator for predicting the end of tool life.  相似文献   

2.
Friction drilling utilizes the heat generated from the friction between the tool and the thin workpiece to form a bush for fixtures such as screw threads in plastic deformation process. This process produces no chip, shortens the time required for hole-making and incurs less tool wear, thus lengthening the service life of the drill. In this study, tungsten carbide drills with and without coating were employed to make holes in AISI 304 stainless steel, which is known to have high ductility, low thermal conductivity and great hardness. TiAIN and AlCrN were coated onto the drill surface by physical vapor deposition (PVD). Performance of coated and uncoated cutting tools was examined for drillings made under different spindle speeds. Changes in relationship between drill surface temperature, tool wear and axial thrust force during machining were also explored. Experimental results reveal that lubricating effect of the coating and low thermal conductivity of AlCrN caused AlCrN-coated drill to produce the highest surface temperature but the lowest axial thrust force with the least tool wear. However, the difference in performance between coated and uncoated drills diminished with increase in number of holes drilled.  相似文献   

3.
Various sizes of step drills were manufactured by a CNC grinder machine and used in the drilling process with different speeds and feed rates to produce single step holes in S1214 free machining steel. The performance of step drills was compared with that of conventional twist drills in the drilling of the free machining steel for the same task. The influences of drill size, feed rate and cutting speed on the performance of step drills were studied. Experimental results show that for better cutting performance, the small diameter should not be less than 60% of the large diameter. Also, most of the changes in the characteristics of the thrust force were influenced by the smaller drill of the step drill. On the other hand, the small diameter part of the step drill only contributed about 30% of the torque. From the experimental results, empirical equations for drilling thrust force and torque have been established for step drills.  相似文献   

4.
A study of a modified drill point design with plane rake faces for drilling high-tensile steels is presented. A geometrical analysis has shown that the modified drill point design yields positive normal rake angle on the entire lips and point relieving in the vicinity of the chisel edge. This drill geometry can be expected to reduce the cutting forces and torque, and hence reduce the possible drill breakages when drilling high-tensile steels. An experimental study of drilling an ASSAB 4340 high-tensile steel with 7–13 mm titanium nitride (TiN) coated high-speed steel (HSS) drills has shown that the modified drills can reduce the thrust force by as much as 46.9%, as compared to the conventional twist drills under the corresponding cutting conditions, while the average reduction of torque is 13.2%. Drill-life tests have also been carried out and confirmed the superiority of the modified drills over the conventional twist drills. In some cases, the conventional drills were broken inside the workpiece, while the modified drills performed very well under the same cutting conditions. To mathematically predict the drilling performance and optimise the drilling process using the plane rake faced drills, predictive models for the cutting forces, torque and power will be developed in the second part of this investigation.  相似文献   

5.
Cutting performance of cemented carbide drills with various coatings was investigated in detail under minimum quantity lubrication (MQL) conditions. An advanced dual-channel Bielomatik MQL system was installed in an Okuma machining center. A specially designed Mapal drill was selected for the studies to eliminate voids between the tool and the MQL tool holder that can interfere with mist delivery. Using this design, a mist flow rate of 25 mL/min was achieved through the drills.Progressive frictional/wear studies were performed. Coated drills were tested in three stages (50, 500, and 7000 holes). During short term drilling tests (50-hole level), cutting performance was comprehensively evaluated for a range of coatings by measuring several in-situ frictional characteristics of the cutting process, such as cutting forces, and related characteristics including, chip type and undersurface morphology. Wear patterns of the cutting tools were indentified as well. Selected coatings were tested further. The best cutting performance based on the 500-hole testing was found with the diamond coating. However, excessive brittleness of the entire coating/substrate system led to premature failure of the drill after 4300 holes. The low-hydrogen DLC coating that also showed promising cutting performance based on the 500-hole test was selected as the next candidate for further testing. Drills with low-hydrogen DLC coating achieved 7200 drilled holes with a flank wear of only 110 μm and moderate intensity of workpiece material pickup. This results in a better surface finish of drilled holes.Based on this study, the Mapal drills with the low-hydrogen DLC coating provided comparable machining performance to that possible with traditional wet machining, but with the environmental and cost advantages possible with MQL.  相似文献   

6.
Performance evaluation of endrills   总被引:1,自引:0,他引:1  
This paper evaluates the performance of a relatively new type of drill called an endrill which is a cross between a drill and an endmill. Investigations into the effects of its cutting conditions on the drilling forces, surface finish, drill wear and hole oversize were carried out. It was found that endrills produced better quality holes than conventional twist drills, better surface finish and less oversize of the holes. Hence, with proper feed, speed and flow rate of the pressurized flushing coolant, a good finish of about Ra = 1 μm can be attained without reaming. Thus, the productivity of finished holes can be remarkably improved. Compared to twist drills, lower torque and thrust were observed which yielded improved tool life and reduced power consumption. No “walking phenomenon” was observed when this kind of drill was used and the amount of hole oversize was found to average about 0.7% of the drill diameter as compared to 1.6% when twist drills were used. Finally, general equations for the drill torque and thrust were derived from the experimental results.  相似文献   

7.
Various cutting techniques are available to drill holes, but drilling is the most common way in secondary machining of composite materials owing to the need for structure joining. Twist drills are widely used in the industry to produce holes rapidly and economically. Since the twist drill has a chisel edge, increasing the length of a chisel edge will result in an increase in the thrust force generated. Whereas, a saw drill has no chisel edge; it utilizes the peripheral distribution of the thrust force for drilling. As a result, the saw drill can achieve better a machining quality in drilling composite laminates than twist drill. The deviation of cutting edge that occurs in saw drill would result in an increase of thrust force during drilling, causing delamination damage when drilling composite materials in particular. A comprehensive model concerning delamination induced by the thrust force of a deviation saw drill during drilling composite materials has been established in the present study. For a deviation saw drill, the critical thrust force that triggers delamination increases with increasing β. A lower feed rate has to be used with an increasing deviation saw drill in order to prevent delamination damage. The results agree with real industrial experience. A guide for avoiding the drill deviation during drill regrinding or drill wear has been proved analytically by the proposed model, especially when the deviation ratio (β) affects the critical thrust force. This approach can be extended to examine similar deviation effects of various drills.  相似文献   

8.
Four models for drilling steels are developed from an extensive machinability experiment. General purpose HSS drills were used for drilling 0.12% carbon steel. Predictive models were developed for tool life, thrust and torque on the drill, and surface roughness of the holes drilled. The research consisted of a laboratory experiment involving four independent variables; cutting speed ranging from 162 to 330 mm/s (32 to 65 sfpm), feed ranging from 0.0635 to 0.381 mm/rev (0.0025 to 0.015 ipr), drill diameter ranging from 7.54 to 14.68 mm (0.2969 to 0.5781 in.), and steel hardness ranging from 146 to 330 BHN. The experiment was designed as a central composite design with 30 treatment combinations. Tool life varied from 3.98 to 265.5 min. Full second-order models, containing 15 terms, were simplified to reduced models. Model fits ranged from an R-square of about 0.68 to about 0.92.  相似文献   

9.
In the aerospace industry, burr removal is an important and expensive part of the manufacturing process. One approach to minimizing burrs is to lower the thrust force in drilling through suitable modification of the drill geometry such as the use of step drills. This paper focuses on the modeling of thrust force and torque for step drills. A mechanistic model capturing the various material removal mechanisms, i.e. oblique cutting, orthogonal cutting, and indentation, active on different sections of the step drill is developed. Subsequently, a series of experiments is conducted to calibrate and validate the model. The validation results show that the predicted thrust and torque values are in good agreement with measured values, although the torque is slightly underestimated. The validated model was further used to investigate the effects of step drill geometry parameters on the thrust force and torque. The model predictions suggest that the thrust force increases and the torque decreases for larger secondary point angles and inner diameters.  相似文献   

10.
METAL CUTTING or MACHINING plays a crucialrole in most manufacturing industries.New alloys andengineered materials that have to be machined are hard,tough,and abrasive and can also cause chemical wearof cutting tool materials.Depositing hard coatings on cutting tools is animportant development,which has enhanced cuttingtool performance as a result of providing higher wearresistance,lower friction,lower cutting forces,bettersurface finish of the workpieces,and longer tool life,which ena…  相似文献   

11.
In order to improve the cutting performance of drills, a thick web drill with curved primary cutting edges was devised. The curved primary cutting edge was mathematically determined by changing the distribution of the tool orthogonal rake angle along the primary cutting edge. A three-dimensional finite element analysis based on the torsional rigidity of the drill was applied to obtain the “secondary” flute shape of the drill with curved primary cutting edges and to specify the web thickness. Experiments were conducted to evaluate the drill's cutting performance. Compared with conventional twist drills of different web thicknesses, the thick web drill with curved primary cutting edges shows greater effectiveness in reducing the thrust force, the torque, and the tool wear, thus providing a better cutting ability and a longer tool life.  相似文献   

12.
The adhesion of Pt to carbon surfaces is an important technological consideration in proton exchange membrane fuel cells (PEMFCs). Thin films of Au, Ti and Cr were deposited on graphite, non-hydrogenated diamond-like carbon (NH-DLC) and hydrogenated DLC (H-DLC) coatings' surfaces using a physical vapour deposition (PVD) process. The friction force curves obtained from sliding a Pt pin against these surfaces were used to evaluate the adhesion of Pt to the coated carbon surfaces. Interface strength calculations for graphite and diamond surfaces were carried out using first principles simulations. The incorporation of the interfacial PVD films enhanced the adhesion between Pt and graphite; rather than interfacial separation taking place, the bonds in graphite were broken (graphite decohesion) as confirmed by the first principles calculations. The bond between Pt and NH-DLC was stronger than that between Pt and graphite, and the transfer of Pt to the uncoated NH-DLC, as well as the Ti- and Cr-coated NH-DLC surfaces occurred as a result of the breaking of Pt-Pt bonds (Pt decohesion). Au film was peeled off the NH-DLC surface by the Pt pin contact, consistent with the calculated work of separation for the Au/carbon interface, which was weaker than works of decohesion for both NH-DLC and Pt. In case of the H-DLC, the low adhesion of Pt to this surface was improved by the PVD coatings, but the improvement was less compared to the coated graphite surfaces, as all PVD films were peeled off the H-DLC surfaces by the sliding action of the Pt pin.  相似文献   

13.
The thrust force, torque, and tool wear in drilling of Zr-based bulk metallic glass (BMG) material are investigated. Drilling the BMG at high speed generates the chip light emission, high tool temperature, and severe tool wear. At low spindle speed, the BMG work-material builds up at the major and margin cutting edges and may break the drill. A range of feasible spindle speed and feed rate for the efficient drilling of BMG without the detrimental chip light emission and cutting edge work-material build-up has been identified in this study. Under the same drilling condition, the WC-Co tool generally requires less thrust force and about the same torque than the high-speed steel tool. The progressive wear of the major and margin cutting edges for BMG drilling is examined. Severe drill wear is associated with the bright BMG chip light emission. Without chip light emission, the drill wear is visible but not severe. This study concluded that precision holes in BMG could be generated with proper selection of tooling and process parameters.  相似文献   

14.
Dry and minimum quantity lubrication (MQL) drilling of cast magnesium alloy AM60 used in the manufacturing of lightweight automotive components have been studied. The maximum and average torque and thrust forces measured during drilling using distilled water (H2O-MQL) and a fatty acid-based MQL fluid (FA-MQL), both supplied at the rate of 10 ml/h, were compared with those generated during flooded (mineral oil) drilling. Tool life during dry drilling was inadequately short, due to excessive magnesium transfer and adhesion to the (HSS steel) drill causing drill failure in less than 80 holes. The use of MQL reduced magnesium adhesion and built-up edge formation, resulting in an increase in tool life as well as reductions in both average torque and thrust forces—prompting a performance similar to that of flooded drilling. The maximum temperature generated in the workpiece during MQL drilling was lower than that observed in dry drilling, and comparable to flooded condition. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements near the holes, revealed a notable softening in the case of dry drilling, but not for MQL drilling. MQL drilling provided a stable drilling performance, which was evident from the uniform torque and force patterns throughout the drilling cycles and also resulted in desirable machining characteristics, including a smooth hole surface and short chip segments.  相似文献   

15.
An analytical finite element technique was developed for predicting the thrust force and torque in drilling with twist drills. The approach was based on representing the cutting forces along the cutting lips as a series of oblique sections. Similarly, cutting in the chisel region was treated as orthogonal cutting with different cutting speeds depending on the radial location. For each section, an Eulerian finite element model was used to simulate the cutting forces. The section forces were combined to determine the overall thrust force and drilling torque. Good agreement between the predicted and measured forces and torques was found in orthogonal and oblique cutting and in drilling tests. The drilling tests were performed on AISI 1020 for several drill diameters, spindle speeds, and feed rates. An extension of the technique for predicting drill temperatures has also been described.  相似文献   

16.
麻花钻几何参数对不锈钢钻削性能影响的研究   总被引:1,自引:0,他引:1  
采用ProE和Deform-3D软件分析了影响麻花钻钻411性能关健的几何参数,主要研究麻花钻横刃和顶角对不锈钢钻削过程中切削力、扭矩、刀具磨损的影响.介绍了缩短横刃长度和采用S形横刃螺旋面钻尖对不锈钢钻削力和扭矩的影响.重点分析了顶角影响主切削刃的长度、单位刃长的切削负荷、切削层中切削宽度与切削厚度的比例、切削中轴向力与扭矩、切屑形成与排屑情况.对于在钻削中,如何提高钻头的寿命,提高钻削加工的生产率和孔的加工质量具有重要的指导意义.  相似文献   

17.
《CIRP Annals》1988,37(1):73-78
This investigation examines the cutting mechanisms and performance characteristics of the New Point Drill. The New Point Drill is a carbide tipped twist drill with a non-cutting zone at the center of the drill. The mechanics by which both the chips that form in the central core of the drill and those formed by the two cutting edges are described using SEM and conventional microscopy. Five different point geometries of carbide tipped drills (including the New Point Drill) and four geometries of HSS drills were used to drill S15C (AISI 1015) steel at a Rockwell B hardness (HRB) of 65 and S45C (AISI 1045) steel at 96 HRB and 104 HRB. The torque, thrust, spindle horsepower, and chip shape served to compare the performance characteristics of the drills.  相似文献   

18.
In order to extend tool life and improve quality of hole drilling in carbon composite materials, a better understanding of ‘one shot’ hole drilling is required. This paper describes the development of an empirical model of the maximum thrust force and torque produced during drilling of carbon fiber with a ‘one shot’ drill bit. Shaw's simplified equations are adapted in order to accommodate for tool wear and used to predict maximum thrust force and torque in the drilling of carbon composite with a ‘one shot’ drill bit. The mathematical model is dependent on the number of holes drilled previously, the geometry of the drill bit, the feed used and the thickness of the workpiece. The model presented here is verified by extensive experimental data.  相似文献   

19.
Drilling of pre-sintered cemented carbide parts is a challenging task due to the high hardness and abrasive nature of the WC grains. This operation is commonly done using uncoated cemented carbide drill bits but the tool life is very limited requiring tool re-sharpening after a few holes. A solution for the improvement of the tool performance is here exploited by the use of nanocrystalline diamond (NCD) films as high abrasion resistant coatings. These coatings were grown in a hot filament chemical vapor deposition (HFCVD) reactor. Filament temperatures in the range of 1940-1980 °C were crucial to obtain highly adherent and very uniform coatings at the cutting edge and on the surfaces of the flutes. The performance of the coated tools was evaluated in through-hole drilling of a pre-sintered cemented carbide showing outstanding cutting efficiency when compared to that of an uncoated tool: maximal 940 mm/min infeed rates (app. 1 s to drill 17 mm) instead of 20 mm/min for the latter; absence of tool wear in contrast to a flank wear of about 50 μm in the uncoated tool after only 4 holes; hole edge integrity even at the highest infeed rates while grain decohesion at the hole edge takes place when using bare drill bits.  相似文献   

20.
High-throughput drilling of titanium alloys   总被引:3,自引:1,他引:3  
Experiments of high-throughput drilling of Ti–6Al–4V at 183 m/min cutting speed and 156 mm3/s material removal rate (MRR) using a 4 mm diameter WC–Co spiral point drill were conducted. The tool material and geometry and drilling process parameters, including cutting speed, feed, and fluid supply, were studied to evaluate the effect on drill life, thrust force, torque, energy, and burr formation. The tool wear mechanism, hole surface roughness, and chip light emission and morphology for high-throughput drilling were investigated. Supplying the cutting fluid via through-the-drill holes has proven to be a critical factor for drill life, which can be increased by 10 times compared to that of dry drilling at 183 m/min cutting speed and 0.051 mm/rev feed. Under the same MRR of 156 mm3/s with a doubled feed of 0.102 mm/rev (91 m/min cutting speed), over 200 holes can be drilled. The balance of cutting speed and feed is essential to achieve long drill life and good hole surface roughness. This study demonstrates that, using proper drilling process parameters, spiral point drill geometry, and fine-grained WC–Co tool material, the high-throughput drilling of Ti alloy is technically feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号