首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex milieu (i.e., serum) were characterized by surface plasmon resonance (SPR) and (32)P-radiometric assays and reported in a related study (Gong, P.; Lee, C.-Y.; Gamble, L. J.; Castner, D. G.; Grainger, D. W. Anal. Chem. 2006, 78, 3326-3334.).  相似文献   

2.
The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s --> pi* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the "high-density" probe surface than on the "high-efficiency" probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface.  相似文献   

3.
Zhu D  Tang Y  Xing D  Chen WR 《Analytical chemistry》2008,80(10):3566-3571
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.  相似文献   

4.
Surface plasmon resonance (SPR) imaging is a surface-sensitive spectroscopic technique for measuring interactions between unlabeled biological molecules with arrays of surface-bound species. In this paper, SPR imaging is used to quantitatively detect the hybridization adsorption of short (18-base) unlabeled DNA oligonucleotides at low concentration, as well as, for the first time, the hybridization adsorption of unlabeled RNA oligonucleotides and larger 16S ribosomal RNA (rRNA) isolated from the microbe Escherichia coli onto a DNA array. For the hybridization adsorption of both DNA and RNA oligonucleotides, a detection limit of 10 nM is reported; for large (1,500-base) 16S rRNA molecules, concentrations as low as 2 nM are detected. The covalent attachment of thiol-DNA probes to the gold surface leads to high surface probe density (10(12) molecules/cm2) and excellent probe stability that enables more than 25 cycles of hybridization and denaturing without loss in signal or specificity. Fresnel calculations are used to show that changes in percent reflectivity as measured by SPR imaging are linear with respect to surface coverage of adsorbed DNA oligonucleotides. Data from SPR imaging is used to construct a quantitative adsorption isotherm of the hybridization adsorption on a surface. DNA and RNA 18-mer oligonucleotide hybridization adsorption is found to follow a Langmuir isotherm with an adsorption coefficient of 1.8 x 10(7) M(-1).  相似文献   

5.
Lee HJ  Li Y  Wark AW  Corn RM 《Analytical chemistry》2005,77(16):5096-5100
This paper describes a novel approach utilizing the enzyme exonuclease III in conjunction with 3'-terminated DNA microarrays for the amplified detection of single-stranded DNA (ssDNA) with surface plasmon resonance (SPR) imaging. When ExoIII and target DNA are simultaneously introduced to a 3'-terminated ssDNA microarray, hybridization adsorption of the target ssDNA leads to the direction-dependent ExoIII hydrolysis of probe ssDNA strands and the release of the intact target ssDNA back into the solution. Readsorption of the target ssDNA to another probe creates a repeated hydrolysis process that results over time in a significant negative change in SPR imaging signal. Experiments are presented that demonstrate the direction-dependent surface enzyme reaction of ExoIII with double-stranded DNA as well as this new enzymatically amplified SPR imaging process with a 16-mer target ssDNA detection limit of 10-100 pM. This is a 10(2)-10(3) improvement on previously reported measurements of SPR imaging detection of ssDNA based solely on hybridization adsorption without enzymatic amplification.  相似文献   

6.
Aptamers are nucleic acids that have high affinity and selectivity for their target molecules. A target may induce the structure switching from a DNA/DNA duplex to a DNA/target complex. In the present study, a reusable electrochemical sensing platform based on structure-switching signaling aptamers for highly sensitive detection of small molecules is developed using adenosine as a model analyte. A gold electrode is first modified with polytyramine and gold nanoparticles. Then, thiolated capture probe is assembled onto the modified electrode surface via sulfur-gold affinity. Ferrocene (Fc)-labeled aptamer probe, which is designed to hybridize with capture DNA sequence and specifically recognize adenosine, is immobilized on the electrode surface by hybridization reaction. The introduction of adenosine triggers structure switching of the aptamer. As a result, Fc-labeled aptamer probe is forced to dissociate from the sensing interface, resulting in a decrease in redox current. The decrement of peak current is proportional to the amount of adenosine. The present sensing system could provide both a wide linear dynamic range and a low detection limit. In addition, high selectivity, good reproducibility, stability, and reusability are achieved. The recovery test demonstrates the feasibility of the designed sensing system for an adenosine assay.  相似文献   

7.
A serotype-specific RNA biosensor was developed for the rapid detection of Dengue virus (serotypes 1-4) in blood samples. After RNA amplification, the biosensor allows the rapid detection of Dengue virus RNA in only 15 min. In addition, the biosensor is portable, inexpensive, and very easy to use, making it an ideal detection system for point-of-care and field applications. The biosensor is coupled to the isothermal nucleic acid sequence-based amplification (NASBA) technique with which small amounts of virus RNA are amplified using a simple water bath. During the NASBA reaction, a generic sequence is attached to all RNA molecules as described earlier (Wu, S. J.; Lee, E. M.; Putvatana, R.; Shurtliff, R. N.; Porter, K R.; Suharyono, W.; Watt, D. M.; King, C. C.; Murphy, G. S.; Hayes, C. G.; Romano, J. W. J. Clin. Microbiol. 2001, 39, 2794-2798.). It has been shown earlier that Dengue virus can be detected specifically using two DNA probes: a first probe hybridized with the attached generic sequence and, therefore, bound to every amplified RNA molecule; and a second probe either bound to all four Dengue virus serotypes or chosen to be specific for only one serotype. These probes were utilized in the biosensor described in this publication. For a generic Dengue virus biosensor, the second probe is complementary to a conserved region found in all Dengue serotypes. For identification of the individual Dengue virus serotypes, four serotype-specific probes were developed (Wu, S. J.; Lee, E. M.; Putvatana, R.; Shurtiff, R. N.; Porter, K. R.; Suharyono, W.; Watt, D. M.; King, C. C.; Murphy, G. S.; Hayes, C. G.; Romano, J. W. J. Clin. Microbiol. 2001, 39, 2794-2798.). The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The generic DNA probe (reporter probe) is coupled to the outside of dye-encapsulating liposomes. The conserved or Dengue serotype specific probes (capture probes) are immobilized on a polyethersulfone membrane strip. Liposomes are mixed with amplified target sequence and are then applied to the membrane. The mixture is allowed to migrate along the test strip, and the liposome-target sequence complexes are immobilized in the capture zone via hybridization of the capture probe with target sequence. The amount of liposomes present in the immobilized complex is directly proportional to the amount of target sequence present in the sample and can be quantified using a portable reflectometer. The different biosensor components have been optimized with respect to sensitivity and, foremost, specificity toward the different serotypes. An excellent correlation to a laboratory-based detection system was demonstrated. Finally, the assay was tested using a limited number of clinical human serum samples. Although Dengue serotypes 1, 2 and 4 were identified correctly, serotype 3 displayed low cross-reactivity with biosensors designed for detection of serotypes 1 and 4.  相似文献   

8.
Microfluidic channels fabricated from poly(dimethylsiloxane) (PDMS) are employed in surface plasmon resonance imaging experiments for the detection of DNA and RNA adsorption onto chemically modified gold surfaces. The PDMS microchannels are used to (i) fabricate "1-D" single-stranded DNA (ssDNA) line arrays that are used in SPR imaging experiments of oligonucleotide hybridization adsorption and (ii) create "2-D" DNA hybridization arrays in which a second set of PDMS microchannels are placed perpendicular to a 1-D line array in order to deliver target oligonucleotide solutions. In the 1-D line array experiments, the total sample volume is 500 microL; in the 2-D DNA array experiments, this volume is reduced to 1 microL. As a demonstration of the utility of these microfluidic arrays, a 2-D DNA array is used to detect a 20-fmol sample of in vitro transcribed RNA from the uidA gene of a transgenic Arabidopsis thaliana plant. It is also shown that this array fabrication method can be used for fluorescence measurements on chemically modified gold surfaces.  相似文献   

9.
A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide probes covalently linked to fabricated MNPs and Raman reporter tag-conjugated gold nanoparticles (GNPs) and the subsequent removal of GNP-WNV target sequence-MNP hybridization complexes from solution by an externally applied magnetic source. Laser excitation of the pelleted material provided a signature SERS spectrum which is diagnostic for the reporter, 5,5'-dithiobis(succinimidy-2-nitrobenzoate) (DSNB), and restricted to hybridization reactions containing WNV target sequences. Hybridizations containing dilutions of the target oligonucleotide were characterized by a reduction in the intensification of the spectral peaks accorded to the SERS signaling of DSNB, and the limit of detection for target sequence in buffer was 10 pM. Due to the short hybridization times required to conduct the assay and ease with which reproducible Raman spectra can be acquired, the assay is amenable to adaptation within a portable, user-friendly Raman detection platform for nucleic acids.  相似文献   

10.
Using ferrocene-streptavidin conjugates as amplifiers, we recently have demonstrated the simultaneous detection of DNA hybridization to peptide nucleic acid (PNA)-modified gold surfaces at the femtomole level by electrochemical and surface plasmon resonance techniques (Liu, J.; Tian, S.; Tiefenauer, L.; Nielsen, P. E.; Knoll, W. Anal. Chem. 2005, 77, 2756-2761). In this paper, a detailed study of the binding behavior of PNA-DNA is presented by square wave voltammetry and surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The different binding constants for fully matched and single-mismatched DNA were obtained. The effect of the buffer concentration on the PNA-DNA hybrids was investigated using labeled streptavidin by cyclic voltammetry (CV) and SPFS. At high ionic strength, both the CV and SPFS signals were restrained dramatically, which is most probably due to a conformational change of the short-strand PNA-DNA helices on the surface. We conclude that the combination of electrochemical techniques with SPFS is very useful for the study of short DNA structure transformation.  相似文献   

11.
Selective polynucleotide recognition and detection based on a dual-stage method are described. The method involves the development of a recognition surface based on gold nanoparticles modified with a thiolated capture probe able to hybridize with its complementary sequence (target). After hybridization, this sensing surface is removed from the solution and electrodeposited on an electrode surface. The detection of the hybridization event is achieved using the complex [Ru(NH(3))(5)L](2+), were L is [3-(2-phenanthren-9-yl-vinyl)-pyridine], as electrochemical indicator. This complex binds to double strand DNA more efficiently than to single stranded DNA. The advantage of this dual-stage DNA sensing method is the high selectivity derived from the separation of the hybridization event (occurring on one surface) from the detection step (on a different surface), enabling the analysis of long target DNAs, which is usually the case in real DNA sequence analysis. In addition, this approach not only quantifies pmol of a complementary target sequence but also is sensitive to the presence of a single mismatch and its position in the sequence.  相似文献   

12.
Disposable magnetic DNA sensors using an enzyme-amplified strategy for the specific detection of a gene related to the Enterobacteriaceae bacterial family, based on the coupling of streptavidin-peroxidase to biotinylated lacZ gene target sequences, has been developed. A biotinylated 25-mer capture probe was attached to streptavidin-modified magnetic beads and hybridization with the biotinylated target was allowed to proceed. Then, a streptavidin-peroxidase polymer was attached to the biotinylated target, and the resulting modified magnetic beads were captured by a magnetic field on the surface of tetrathiafulvalene (TTF) modified gold screen-printed electrodes (Au/SPEs). The amperometric response obtained at -0.15 V after the addition of hydrogen peroxide was used to detect the hybridization process. In order to improve the sensitivity of the determination and reduce the assay time, different variables of the assay protocol were optimized. A low detection limit (5.7 fmol) with good stability (RSD = 7.1%, n = 10) was obtained. The DNA nonspecific adsorption at the magnetic beads was negligible, the obtained results thus demonstrating the possibility to detect the hybridization event with great specificity and sensitivity. The developed method was used for the analysis of Escherichia coli DNA fragments (326 bases) in polymerase chain reaction (PCR) amplicons extracted from a cell culture. As low as 2.5 aM asymmetric PCR product could be detected with the developed methodology.  相似文献   

13.
A crucial step in the development of implanted medical devices, in vivo diagnostics, and microarrays is the effective prevention of nonspecific protein adsorption from real-world complex media such as blood plasma or serum. In this work, a zwitterionic poly(carboxybetaine acrylamide) (polyCBAA) biomimetic material was employed to create a unique biorecognition coating with an ultralow fouling background, enabling the sensitive and specific detection of proteins in blood plasma. Conditions for surface activation, protein immobilization, and surface deactivation of the carboxylate groups in the polyCBAA coating were determined. An antibody-functionalized polyCBAA surface platform was used to detect a target protein in blood plasma using a sensitive surface plasmon resonance (SPR) sensor. A selective protein was directly detected from 100% human blood plasma with extraordinary specificity and sensitivity. The total nonspecific protein adsorption on the functionalized polyCBAA surface was very low (<3 ng/cm (2) for undiluted blood plasma). Because of the significant reduction of nonspecific protein adsorption, it was possible to monitor the kinetics of antigen-antibody interactions in undiluted blood plasma. The functionalization effectiveness and detection characteristics using a cancer protein marker candidate of polyCBAA were compared with those of the conventional nonfouling oligo(ethylene glycol)-based surface chemistry.  相似文献   

14.
A quantitative universal biosensor was developed on the basis of olignucleotide sandwich hybridization for the rapid (30 min total assay time) and highly sensitive (1 nM) detection of specific nucleic acid sequences. The biosensor consists of a universal membrane and a universal dye-entrapping liposomal nanovesicle. Two oligonucleotides, a reporter and a capture probe that can hybridize specifically with the target nucleic acid sequence, can be coupled to the universal biosensor components within a 10-min incubation period, thus converting it into a specific assay. The liposomal nanovesicles bear a generic oligonucleotide sequence on their outer surface. The reporter probes consist of two parts: the 3' end is complementary to the generic liposomal oligonucleotide, and the 5' end is complementary to the target sequence. Streptavidin is immobilized in the detection zone of the universal membranes. The capture probes are biotinylated at the 5' end and are complementary to another segment in the target sequence. Thus, by incubating the liposomal nanovesicles with the reporter probes, the target sequence, and the capture probes in a hybridization buffer for 20 min, a sandwich complex is formed. The mixture is applied to the membrane, migrates along the strip, and is captured in the detection zone via streptavidin-biotin binding. The biosensor assay was optimized with respect to hybridization conditions, concentrations of all components, and length of the generic probe. It was tested using synthetic DNA sequences and authentic RNA sequences isolated and amplified using nucleic acid sequence-based amplification (NASBA) from Escherichia coli, Bacillus anthracis, and Cryptosporidium parvum. Dose-response curves were carried out using a portable reflectometer for the instantaneous quantification of liposomal nanovesicles in the detection zone. Limits of detection of 1 fmol per assay (1 nM) and dynamic ranges between 1 fmol and at least 750 fmol (1-750 nM) were obtained. The universal biosensors were compared to specific RNA biosensors developed earlier and were found to match or exceed their performance characteristics. In addition, no changes to hybridization conditions were required when switching to the detection of a new target sequence or when using actual nucleic acid sequence-based amplified RNA sequences. Therefore, the universal biosensor described is an excellent tool for use in laboratories or at test sites for rapidly investigating and quantifying any nucleic acid sequence of interest.  相似文献   

15.
We describe here a new strategy for isolating target proteins from complex biological samples based on an aptamer-modified self-propelled microtube engine. For this purpose, a thiolated thrombin or a mixed thrombin-ATP aptamer (prehybridized with a thiolated short DNA) was coassembled with mercaptohexanol onto the gold surface of these microtube engines. The rapid movement of the aptamer-modified microtransporter resulted in highly selective and rapid capture of the target thrombin, with an effective discrimination against a large excess of nontarget proteins. Release of the captured thrombin can be triggered by the addition of ATP that can bind and displace the immobilized mixed thrombin-ATP aptamer in 20 min. The rapid loading and unloading abilities demonstrated by these selective microtransporters are illustrated in complex matrixes such as human serum and plasma. The new motion-driven protein isolation platform represents a new approach in bioanalytical chemistry based on active transport of proteins and offers considerable promise for diverse diagnostic applications.  相似文献   

16.
A DNA hybridization biosensor based on long-range electron transfer that is capable of detecting DNA single-base mismatch is presented. A mixed self-assembled monolayer of single-stranded DNA (ss-DNA), thiolated at the 3' end, and 6-mercapto-1-hexanol was formed on a gold surface. This probe ss-DNA-modified gold surface was incubated in 2,6-disulfonic acid anthraquinone (AQDS) intercalator solution, rinsed, and placed in an AQDS-free buffer solution, whereupon voltammetric experiments were performed. No voltammetric peaks were observed for probe ss-DNA-modified gold electrodes. Upon DNA hybridization and incubation in AQDS, clear voltammetric peaks, consistent with the oxidation and reduction of AQDS, were observed. The absence of AQDS electrochemistry for ss-DNA-modified surfaces clearly shows the electrochemistry is due to long-range electron transfer through the DNA duplex. No peak currents were observed when the probe ss-DNA-modified surface was exposed to noncomplementary target DNA, but there was a diminution in current signal upon hybridization with C-A mismatched and a G-A mismatched targets.  相似文献   

17.
The optical technique of surface plasmon resonance phase imaging (SPR-PI) is implemented in a linear microarray format for real-time measurements of surface bioaffinity adsorption processes. SPR-PI measures the phase shift of p-polarized light incident at the SPR angle reflected from a gold thin film in an ATR Kretschmann geometry by creating an interference fringe image on the interface with a polarizer-quartz wedge depolarizer combination. The position of the fringe pattern in this image changes upon the adsorption of biomolecules to the gold thin film. By using a linear array of 500 μm biosensor element lines that are perpendicular to the interference fringe image, multiple bioaffinity adsorption measurements can be performed in real time. Two experiments were performed to characterize the sensitivity of the SPR-PI measurement technique: First, a ten line pattern of a self-assembled monolayer of 11-mercaptoundecamine (MUAM) was created via photopatterning to verify that multiple phase shifts could be measured simultaneously. A phase shift difference (Δφ) of Δφ = 182.08 ± 0.03° was observed for the 1.8 nm MUAM monolayer; this value agrees with the phase shift difference calculated from a combination of Fresnel equations and Jones matrices for the depolarizer. In a second demonstration experiment, the feasibility of SPR-PI for in situ bioaffinity adsorption measurements was confirmed by detecting the hybridization and adsorption of single stranded DNA (ssDNA) onto a six-component DNA line microarray patterned monolayer. Adsorption of a full DNA monolayer produced a phase shift difference of Δφ = 28.80 ± 0.03° at the SPR angle of incidence and the adsorption of the ssDNA was monitored in real time with the SPR-PI. These initial results suggest that SPR-PI should have a detection limit roughly 100 times lower than traditional intensity-based SPR imaging measurements.  相似文献   

18.
Erickson D  Liu X  Krull U  Li D 《Analytical chemistry》2004,76(24):7269-7277
Biosensors and more specifically biochips exploit the interactions between a target analyte and an immobilized biological recognition element to produce a measurable signal. Systems based on surface nucleic acid hybridization, such as microarrays, are particularly attractive due to the high degree of selectivity in the binding interactions. One of the drawbacks of this reaction is the relatively long time required for complete hybridization to occur, which is often the result of diffusion-limited reaction kinetics. In this work, an electrokinetically controlled DNA hybridization microfluidic chip will be introduced. The electrokinetic delivery technique provides the ability to dispense controlled samples of nanoliter volumes directly to the hybridization array (thereby increasing the reaction rate) and rapidly remove nonspecific adsorption, enabling the hybridization, washing, and scanning procedures to be conducted simultaneously. The result is that all processes from sample dispensing to hybridization detection can be completed in as little as 5 min. The chip also demonstrates an efficient hybridization scheme in which the probe saturation level is reached very rapidly as the targets are transported over the immobilized probe site enabling quantitative analysis of the sample concentration. Detection levels as low as 50 pM have been recorded using an epifluorescence microscope.  相似文献   

19.
To provide a comprehensive understanding of the field effect in silicon nanowire (SiNW) sensors, we take a systematic approach to fine tune the distance of a charge layer by controlling the hybridization sites of DNA to the SiNW preimmobilized with peptide nucleic acid (PNA) capture probes. Six target DNAs of the same length, but differentiated successively by three bases in the complementary segment, are hybridized to the PNA. Fluorescent images show that the hybridization occurs exclusively on the SiNW surface between the target DNAs and the PNA. However, the field-effect response of the SiNW sensor decreases as the DNA (charge layer) moves away from the SiNW surface. Theoretical analysis shows that the field effect of the SiNW sensor relies primarily on the location of the charge layer. A maximum of 102% change in resistance is estimated based on the shortest distance of the DNA charge layer (4.7 A) to the SiNW surface.  相似文献   

20.
Two mycocardial infarction biomarkers, myoglobin (MG) and cardiac troponin I (cTnI), were quantified at biological levels and in undiluted serum without sample pretreatment using surface plasmon resonance (SPR) sensors. To achieve detection of biomarkers in undiluted serum (72 mg/mL total protein concentration), minimization of the nonspecific signal from the serum protein was achieved by immobilizing the antibody for the biomarkers on an N-hydroxysuccinimide activated 16-mercaptohexadecanoic acid self-assembled monolayer. This monolayer reduces the nonspecific signal from serum proteins in such a manner that short exposure of the sensor to serum prior to analysis prevents any further nonspecific adsorption during analysis. Thus, sensing of MG and cTnI was achieved on the basis of the difference between signals from the active sensor and a reference sensor that captured background interference. This resulted in direct measurement of these biomarkers in undiluted serum. Detection limits for both markers were below 1 ng/mL, which is below the threshold needed to detect myocardial infarction. Detecting biomarkers in the low ng/mL range without signal amplification in such a complex matrix as serum corresponds to a selectivity of 108. The root-mean-square-error (RMSE) of calibration was below 2 ng/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号