首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Critical heat flux (CHF) in subcooled flow boiling under axially nonuniform heating conditions was experimentally investigated using a tube heated with a dc power source. The thickness of the tube wall in the axial direction was varied to attain axially nonuniform heating. The different thicknesses, therefore, separated the tube into regions of high heat flux and regions of low heat flux. The lengths of these regions of the tube were also varied to study the effect on the CHF. The objective of this system is to initiate boiling in the high-heat-flux region, thus increasing heat transfer, and to interrupt the bubble boundary layer in the low-heat-flux region. Because it is the initiation of boiling that increases heat transfer, the performance of such a system is linked to its effectiveness in repeatedly interrupting and re-establishing the bubble boundary layer. Our experiments, involving tubes that had sections of different thicknesses and different lengths, showed that when the heat flux in the low-heat-flux region was below the net vapor generation (NVG) heat flux, this system enhanced the CHF, but not when it was above the NVG. Also, for relatively short low-heat-flux regions, the CHF was not enhanced, presumably because there was insufficient time to interrupt the bubble boundary layer. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(2): 169–178, 1998  相似文献   

2.
This study examines both high-flux flow boiling and critical heat flux (CHF) under highly subcooled conditions using FC-72 as working fluid. Experiments were performed in a horizontal flow channel that was heated along its bottom wall. High-speed video imaging and photomicrographic techniques were used to capture interfacial features and reveal the sequence of events leading to CHF. At about 80% of CHF, bubbles coalesced into oblong vapor patches while sliding along the heated wall. These patches grew in size with increasing heat flux, eventually evolving into a fairly continuous vapor layer that permitted liquid contact with the wall only in the wave troughs between vapor patches. CHF was triggered when this liquid contact was finally halted. These findings prove that the CHF mechanism for subcooled flow boiling is consistent with the interfacial lift-off mechanism proposed previously for saturated flow boiling.  相似文献   

3.
Microchannel two‐phase flow is an effective cooling method used in microelectronics, in which the heat flux density is unevenly distributed usually. The paper is focused on numerical study the effect of aspect ratio on the flow boiling of microchannels with nonuniform heat flux. The heat source is a three‐dimensional (3D) integrated circuit. 3D microchannel model and volume of fluid method are coupled in numerical simulation. The results show that the aspect ratio has no relationship with the two‐phase pressure drop of the microchannel. It has a certain influence on the distribution of bubble shape. In terms of the heat transfer coefficient, the aspect ratio has a certain influence on a section of the inlet. Due to the nucleate boiling, the convective heat transfer in the remaining areas is the dominant factor and the average heat transfer coefficient is mainly determined by the heat flux at the bottom of the channel.  相似文献   

4.
Heat transfer for flow boiling of water and critical heat flux (CHF) experiments in a half‐circumferentially heated round tube under low‐pressure conditions were carried out. To clarify the flow patterns in the heated section, experiments in the round tube under the same conditions were also carried out, and their results were compared. The experiments were conducted with atmospheric‐pressure water in test sections with inner diameter D = 6 mm, heated length L = 360 mm, inlet water subcooling ΔTin = 80 K, and mass velocity G from 0 to 2000 kg/(m2·s) for the half‐circumferentially heated round tube and from 0 to 7000 kg/(m2·s) for the full‐circumferentially heated tube. The experimental data demonstrated that the wall temperature near the outlet of the half‐circumferentially heated tube remained almost the same until CHF. It was found that burnout occurred when the flow regime changed from churn flow to annular flow, and the liquid film on the heated wall dried out although liquid film on the unheated wall remained. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(3): 149–164, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10022  相似文献   

5.
HighHeatFluxBurnoutinSubcooledFlowBoilingG.P.Celata;M.Cumo;A.Mariani(ENEAEnergyDepartment,ViaAnguillarese,301I-00060S.M.Galer...  相似文献   

6.
The effect of the heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by means of a direct current heated plate made of stainless steel with various lengths. The motion of bubbles at near burnout was observed by a high‐speed video camera under atmospheric pressure conditions. Consideration was made of the critical wavelength of the Helmholtz instability in several CHF mechanistic models. The slug length at CHF almost coincided with the critical wavelength. It is further confirmed that when the heated length is shorter than the critical wavelength, a large enhancement of the CHF is seen. © 2000 Scripta Technica, Heat Trans Asian Res, 29(2): 132–143, 2000  相似文献   

7.
An experimental and semitheoretical study was carried out for the critical heat flux (CHF) on natural convective boiling in uniformly heated vertical short‐thick tubes and vertical short‐thick annular tubes submerged in saturated liquids. By adapting a mathematical dealing method based on the theoretical formulas of CHF of both the natural convective boiling in vertical narrow‐long tubes and the pool boiling, a simple semitheoretical formula was derived. The new formula expands the prediction range of CHF from pool boiling of vertical plates to very long vertical tubes and agrees well with the data of the tubes, annular tubes submerged in water or other liquids under various pressure conditions. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 402–410, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10103  相似文献   

8.
The pool boiling characteristics of dilute dispersions of alumina nanoparticles in water were studied. Consistent with other nanofluid studies, it was found that a significant enhancement in critical heat flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). During experimentation and subsequent inspection, formation of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly changes surface texture of the heater wire surface which could be the reason for improvement in the CHF value. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20301  相似文献   

9.
Critical heat flux (CHF) of liquid hydrogen (LH2) flow boiling under microgravity is vital for designing space cryogenic propellant conveying pipe since the excursion of wall temperature may cause system failure. In this study, a two-dimensional axisymmetric model based on the wall heat flux partition (WHFP) model was proposed to predict the CHF condition under microgravity including the wall temperature and the CHF location. The proposed numerical model was validated to demonstrate a good agreement between the simulated and experimentally reported results. Then, the wall temperature distribution and the CHF location under different gravity conditions were compared. In addition, the WHFP and vapor-liquid distribution along the wall under microgravity were predicted and its difference with terrestrial gravity condition was also analysed and reported. Finally, the effects of flow velocity and inlet sub-cooling on the wall temperature distributions were analysed under microgravity and terrestrial gravity conditions, respectively. The results indicate that the CHF location moves upstream about 5.25 m from 1g to 10−4g since the void fraction near the wall reaches the breakpoint of CHF condition much earlier under the microgravity condition. Furthermore, the increase of the velocity and decrease of the sub-cooling have smaller effects on the CHF location during LH2 flow boiling under microgravity.  相似文献   

10.
INTanDUCTI0NBoilingheattransferandcriticalheatflux(CHF)inaconfinednarrowspacehavebeenstudiedexperi-melltallybyanumberofinvestigatorsinthepastfewdecades.However,thereisnoanypopularlyacceptedmodelintheheattransferinnarrowspaceboiling,althoughsomepopularknowledgeabouttheboilingheattransferinthenarrowspacehavebeenacceptedbymanyresearchers.Theknowledgecanbecon-cludedasthatthenucleateboilingheattransferisenhancedatlowheatfluxregionanddeterioratedathighheatfiuxregi0nespeciallyatCHF.Theenhanceme…  相似文献   

11.
In previous papers (Int J Heat Mass Transfer, 2008;50:3481–3489, 2009;52: 814–821), the authors conducted measurements of liquid–vapor structures in the vicinity of a heating surface for subcooled pool boiling on an upward‐facing copper surface by using a conducting probe method. We reported that the macrolayer dryout model is the most appropriate model of the CHF and that the reason why the CHF increases with increasing subcooling is most likely that a thick macrolayer is able to form beneath large vapor masses and the lowest heat flux of the vapor mass region shifts towards the higher heat flux. To develop a mechanistic model of the CHF for subcooled boiling, therefore, it is necessary to elucidate the effects of local subcooling on boiling behaviors in the vicinity of a heating surface. This paper measured local temperatures close to a heating surface using a micro‐thermocouple at high heat fluxes for water boiling on an upward‐facing surface in the 0 to 40 K range of subcooling. A value for the effective subcooling, defined as the local subcooling during the period while vapor masses are being formed was estimated from the detected bottom peaks of the temperature fluctuations. It was established that the effective subcooling adjacent to the surface remains at considerably lower values than the bulk liquid subcooling. This suggests that, from nucleation to coalescence, the subcooling of a bulk liquid has a smaller effect on the behavior of primary bubbles than the extent of the subcooling would appear to suggest. An empirical correlation of the effective subcooling is proposed to provide a step towards quantitative modeling of the CHF for subcooled boiling. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20277  相似文献   

12.
13.
High critical heat fluxes (CHFs) for subcooled boiling of water in a small tube were investigated experimentally. A platinum tube with an inner diameter of 1.0 mm and a length of 40.9 mm was used in the experiment. The upward flow velocity, the subcooling of water, and the outlet pressure of the experimental tube were varied to enable a parametric study of the CHFs. The flow velocity ranged from 9 to 13 m/s and the inlet subcooling ranged from 69 to 148 K. The boiling number decreased with increasing Weber number. The boiling number is also dependent on a non-dimensional parameter and the density ratio of liquid to vapor. A correlation for the high CHF of the small tube was obtained based on the experimental data. Finally, the high CHF correlation was evaluated using the CHF data obtained by other researchers.  相似文献   

14.
The study was focused on the effect of the inclination angle on the critical heat flux of countercurrent boiling in an inclined uniformly heated tube with open top and closed bottom ends at zero inlet flow. The experimental results show that the CHF data of the small vertical tubes agree reasonably well with the predicting correlation proposed by Tien. The CHF data of the small inclined tubes decrease with reducing the inclination angle. The experimental data of the inclined tubes agrees reasonably well with the modified correlation, which is resulted from the conventional correlation for vertical tubes.  相似文献   

15.
Experiments are performed to investigate the impact of inserts (TTI, TBI, and TBHI) accompanied by different twist ratios (ie, y/w = 3.69, 4.39, and 5.25) with uniform heat flux condition to study the performance characteristics of pressure drop, rate of heat flow, and heat transfer enhancement. Experiments were carried out on different twisted tape inserts in a turbulent flow regime by choosing suitable Reynolds number between 3100 and 39 000. A plain tube is tested and compared with the empirical correlations and are found to be in good agreement with the experimental data. In the case of twisted tape inserts stronger swirl flow is observed along the length of the tube. The variation of reduction in pressure along the length of tube and heat flux in the form of the friction factor and Nusselt number are represented graphically. Thermal performance factor tends to increase with a decrease in the taper twist ratio. The maximum enhancement in Nusselt number and friction factor was found to be in the case of TBI and TBHI. Experimental results are justified and are found to be reliable and accurate with the analytical results, with ±5% and ±4.2% deviation for Dittus‐Boelter and Petukhov correlation in the case of Nusselt number and ±7.2% deviation, respectively, for loss in the friction.  相似文献   

16.
In this study, the critical heat flux (CHF) and heat‐transfer coefficient under the pool‐boiling state were tested using multi‐wall carbon nanotubes (MWCNT) CM‐95, CM‐100, and oxidized MWCNT CM‐100. The results showed that the highest CHF increase for both MWCNT CM‐95 and CM‐100 was at the volume fraction of 0.001%, and that the CHF increase ratio for MWCNT CM‐100 nanofluid with long particles was higher than that for MWCNT CM‐95 nanofluid with short particles. In addition, at the volume fraction of 0.001%, the oxidized MWCNT CM‐100 nanofluid indicated a 47.27% higher CHF‐increase ratio as well as an approximately 21.04% higher heat‐transfer coefficient increase ratio compared with the MWCNT CM‐100 nanofluid without oxidation treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The characteristics of critical heat flux (CHF) in existing experiments under high subcooling and high velocity in short heated channels have, for the first time, been systematically and quantitatively investigated to provide a CHF correlation that can properly predict the effect of channel length, especially when the channel length-to-channel diameter ratio L/D is less than about 20. The major test conditions of existing CHF experiments investigated in this study were channel diameter 1 to 4 mm, L/D 1 to 25, 0.1 to 1.2 MPa pressure, 34 to 117°C inlet water subcooling and 500 to 40 700 kg/(m2 · s) mass flux in circular channels, and 3 to 20 mm gap size, 6 to 40 L/De, 0.1 to 3.1 MPa pressure, 4 to 166°C inlet water subcooling, and 940 to 27,000 kg/(m2 · s) mass flux in rectangular channels. The effect of L/D on CHF was evaluated referring to the analytical solution of CHF, which was previously derived by the author for the channel flow at high subcooling and high velocity. As a result, the effect of L/D was quantitatively clarified as an effect of magnitude in heat transfer of single-phase forced-convection flow, giving a larger CHF with a smaller L/D in the case of L/D less than about 20. The proposed correlation predicts CHF to within a ±35 percent error margin. ©1998 Scripta Technica, Heat Trans Jpn Res, 27(7): 509–521, 1998  相似文献   

19.
A new experimental work was made to discover a principle mechanism of the burnout in pool boiling. Here, we directly observed a liquid layer structure under a massive vapor clot and the liquid layer-related burnout phenomenon. Based on the present observations, we have made a visual model for the formation and dryout of a liquid film under its vapor environment. At the formation process, liquid is trapped in interleaved space between growing bubbles and surface and the liquid trapping continues between coalesced bubbles and surface. In the dryout process, we especially observed vapor “holes” made by spontaneous breakup of discrete nucleating bubbles inside a vapor clot. The burnout can be triggered by the evaporation of the liquid film region expanded from rims of the holes.  相似文献   

20.
Friction and compound heat transfer behaviors in a dimpled tube fitted with a twisted tape swirl generator are investigated experimentally using air as working fluid. The effects of the pitch and twist ratio on the average heat transfer coefficient and the pressure loss are determined in a circular tube with the fully developed flow for the Reynolds number in the range of 12,000 to 44,000. The experiments are performed using two dimpled tubes with different pitch ratios of dimpled surfaces (PR = 0.7 and 1.0) and three twisted tapes with three different twist ratios (y/w = 3, 5, and 7). Experiments using plain tube and dimpled tube acting alone are also carried out for comparison. The experimental results reveal that both heat transfer coefficient and friction factor in the dimpled tube fitted with the twisted tape, are higher than those in the dimple tube acting alone and plain tube. It is also found that the heat transfer coefficient and friction factor in the combined devices increase as the pitch ratio (PR) and twist ratio (y/w) decrease. In addition, an empirical correlation based on the experimental results of the present study is sufficiently accurate for prediction the heat transfer (Nu) and friction factor (f) behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号