首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes an experimental and a semi-empirical study on the impingement cooling characteristics of heat sinks with longitudinal fins of a type suitable for LSI packages. The experiments were performed with a variety of different fins. To enhance impingement cooling, one long rectangular inlet orifice (slit) over the center of the heat sink was found to offer the best structure. The optimum orifice width is about 1/6 of the base width of the heat sink. The thermal resistance at a fixed volumetric flow rate and orifice width varies little with size of the gap between the fin tops and inlet orifice, but gaps near 2 mm slightly lower the resistance. Correlations are proposed between the thermal resistance of the heat sink and the geometry of the longitudinal fins. The accuracy of the predicted thermal resistances was found to be within ±25% of the experimental data. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(8): 537–553, 1996  相似文献   

2.
This paper describes the use of our previous study's prediction procedures for calculating thermal resistance and pressure drop. The procedures are used in the optimization of heat sink geometries for impingement air-cooling of LSI packages. Two types of heat sinks are considered: ones with longitudinal fins and ones with pin fins. We optimized the heat sink geometries by evaluating 16 parameters simultaneously. The parameters included fin thickness, spacing, and height. For the longitudinal fins, the optimal fin thicknesses were found to be between 0.12 and 0.15 mm, depending on which of the four types of fans were used. For pin fins, the optimal pin diameters were between 0.39 and 0.40 mm. Under constant pumping power, the optimal thermal resistance of the longitudinal fins was about 60% that of the pin fins. For both types of heat sinks, the optimal thermal resistance for four off-the-shelf fans was only slightly (maximum about 1%) higher than the theoretical optimum for the same pumping power. When manufacturing cost performance is considered, the most economical fin thickness and diameter are about 5 to 10 times higher than the optimal values calculated without respect for manufacturing costs. These values almost correspond to the actual limits of extrusion and press heat-sink manufacturing processes. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 138–151, 1999  相似文献   

3.
何为  丁愫 《热科学与技术》2021,20(2):134-140
水冷散热器在数据中心服务器CPU芯片冷却技术中发挥着重要的作用。如何获得高性能的散热效率成为了该领域关注的重点。针对一种翅柱式水冷散热器,用数值模拟的方法,通过改变翅柱的结构参数来优化散热器的散热性能以及流动特性。在相同的翅柱间距下,改变翅柱的直径和高度,在不同的入口流量下,研究其温度,努塞尔数,压降,摩擦系数,分析比较其综合系数对散热性能的影响,并对结果进行了实验验证。结果表明翅柱高度3.9mm,直径为0.9mm的散热器其综合系数最大  相似文献   

4.
This paper is a semi-empirical report on an algorithm for the prediction of thermal resistance for impingement cooling of pin-fin heat sinks for LSI packages when the inlet orifice is relatively large and is located over the center of the sink. We present a physical model suitable for these types of heat sinks, based on flow visualization results. The model divides the flow region into five parts: I) the top surfaces of the fins where they are directly under the inlet orifice, II) the portions of the vertical surfaces of the pin-fin cylinders, where those surfaces are directly below the inlet port, III) the surface of the base to which the fins are attached, excluding the areas occupied by the feet of the fins themselves, IV) the portions of the vertical surfaces of the fin-cylinders excluding those portions of the surfaces that are directly below the inlet port (complementary to region II), V) the portions of the top surfaces of the pins, excluding those portions directly below the inlet port (complementary to region I). We predicted thermal resistance values for heat sinks with pin-fin arrays, for a variety of orifice diameters, gaps, pin-fin diameters, and heights, and number of fins. These values agreed with experimental data within ±30%. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(7): 434–448, 1996  相似文献   

5.
In this paper, the jet liquid impingement heat transfer characteristics in the mini-rectangular fin heat sink for the central processing unit of a personal computer are experimentally investigated. The experiments are tested with three different channel width heat sinks under real operating conditions: no load and full load conditions. The jet liquid impingement cooling with mini-rectangular fin heat sink system is introduced as the active and passive heat transfer enhancement techniques. Effects of relevant parameters on the central processing unit temperature are considered. It is found that the central processing unit temperatures obtained from the jet liquid impingement cooling system are lower than those from the conventional liquid cooling system; however, the energy consumption also increases. The results of this study are of technological importance for the efficient design of cooling systems of personal computers or electronic devices to enhance cooling performance.  相似文献   

6.
In the present study, the heat transfer characteristics of nanofluids cooling in the mini-rectangular fin heat sink are studied. The heat sinks with three different channel heights are fabricated from the aluminum by the wire electrical discharge machine with the length, width and base thickness of 110, 60, and 2 mm, respectively. The nanofluids are the mixture of de-ionized water and nanoscale TiO2 particles. The results obtained from the nanofluids cooling in mini-rectangular fin heat sink are compared with those from the de-ionized water cooling method. Effects of the inlet temperature of nanofluids, nanofluid Reynolds number, and heat flux on the heat transfer characteristics of mini-rectangular fin heat sink are considered. It is found that average heat transfer rates for nanofluids as coolant are higher than those for the de-ionized water as coolant. The results of this study are of technological importance for the efficient design of cooling systems of electronic devices to enhance cooling performance.  相似文献   

7.
In the present study, the liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU is studied. Six mini-rectangular fin heat sinks with two different material types and three different channel widths are fabricated from the copper or aluminum with the length, the width and the base thickness of 37, 37, 5 mm, respectively. The de-ionized water is used as coolant. Effects of channel width, coolant flow rate, material type of heat sink and run condition of PC on the CPU temperature are considered. The liquid cooling in mini-rectangular fin heat sink with thermoelectric is compared with the other cooling techniques. The thermoelectric has a significant effect on the CPU cooling of PC. However, energy consumption is also increased. The results of this study are expected to lead to guidelines that will allow the design of the cooling system with improved heat transfer performance of the electronic equipments.  相似文献   

8.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

9.
The cooling performance of a plate‐fin‐type heat sink equipped with a cooling fan was investigated experimentally. The heat sink was 80 mm long, 43 mm wide, and 24 mm in height (including the 4‐mm‐thick base). The cooling fan was 40 × 40 × 15 mm and was set to direct the air flow vertically in the downstream half of the heat sink. We focused on the influence of the height (which varied from 5 to 20 mm) that the fan was set at, on the heat transfer coefficient of the heat sink. The maximum value of the heat transfer coefficient was achieved at a setting height of 5 mm. At this height, the volumetric heat transfer coefficient was 1.8 times as high as that in a parallel flow under the same fan power. This result indicates that the cooling performance of heat sinks with a cooling fan can be improved by using this kind of compact structure. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 512–520, 2001  相似文献   

10.
针对叶片尾缘内部柱肋冷却方式进行数值仿真和优化分析。采用CFX软件进行数值仿真计算,建立圆形柱肋、水滴形柱肋和正方形柱肋3种柱肋形状下,不同柱肋间距的矩形通道模型,验证数值模型的正确性以及网格无关性。分析了顺排和叉排的排列方式下,柱肋形状和柱肋间距对下底面努塞尔数以及整个通道内压力损失的影响,最后通过MATLAB的遗传算法对仿真结果进行优化。研究表明:柱肋模型中,横向和纵向柱肋间距最小时,换热效果最佳,压力损失最大;在顺排和叉排中,正方形柱肋对通道的换热强度的提升效果最明显,圆形柱肋提升效果最小。  相似文献   

11.
The slotted fin concept was employed to improve the air cooling performance of plate-fin in heat sinks. Numerical simulations of laminar heat transfer and flow pressure drop were conducted for the integral plate fin, discrete plate fin and discrete slotted fin heat sinks. It is found that the performance of the discrete plate fin is better than that of the integral continuum plate fin and the performance of slotted fin is better than that of the discrete plate fin at the same pumping power of the fan. A new type of heat sink characterized by discrete and slotted fin surfaces with thinner fins and smaller spaces between fins is then proposed. Preliminary computation shows that this type of heat sink may be useful for the next generation of higher thermal load CPUs. The limit of cooling capacity for air-cooling techniques was also addressed.  相似文献   

12.
The slotted fin concept was employed to improve the air cooling performance of plate-fin in heat sinks. Numerical simulations of laminar heat transfer and flow pressure drop were conducted for the integral plate fin, discrete plate fin and discrete slotted fin heat sinks. It is found that the performance of the discrete plate fin is better than that of the integral continuum plate fin and the performance of slotted fin is better than that of the discrete plate fin at the same pumping power of the fan. A new type of heat sink characterized by discrete and slotted fin surfaces with thinner fins and smaller spaces between fins is then proposed. Preliminary computation shows that this type of heat sink may be useful for the next generation of higher thermal load CPUs. The limit of cooling capacity for air-cooling techniques was also addressed. __________ Translated from Journal of Xi’an Jiaotong University, 2006, 40(11): 1241–1245 [译自: 西安交通大学学报]  相似文献   

13.
Minichannel heat sink geometries with varying fin spacing were tested with de‐ionized water and MWCNT (1 wt %) nanofluid to evaluate their performance with flow components of a liquid cooling kit. Four heat sinks with fin spacing of 0.2 mm, 0.5 mm, 1.0 mm, and 1.5 mm were used in this investigation. Heat sink base temperature was analogous to processor operating temperature which was the prime parameter of interest in this investigation. The base temperature decreased by reducing the fin spacing and using multiwalled carbon nanotube (MWCNT) nanofluid. The lowest value of heat sink base temperature recorded was 49.7 °C at a heater power of 255 W by using a heat sink of 0.2 mm fin spacing and MWCNT nanofluid as a coolant. Moreover, as a result of reduced fin spacing and using MWCNT nanofluid as a coolant the value of overall heat transfer coefficient increased from 1200 W/m2K to 1498 W/m2K, translating to about a 15% increase. The value of thermal resistance also dropped by reducing the fin spacing and using MWCNT nanofluid. The most important aspect of the study is that the heat sinks and MWCNT nanofluid proved to be compatible with the pump and radiator of the commercial CPU liquid cooling kit. The pump was capable to handle the pressure drop which resulted by reducing the heat sink fin spacing and by using MWCNT nanofluid. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(7): 653–666, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21107  相似文献   

14.
《Applied Thermal Engineering》2007,27(14-15):2473-2482
The parallel-plain fin (PPF) array structure is widely applied in convective heat sinks in order to create extended surface for the enhancement of heat transfer. In the present study, for investigating the influences of designing parameters of PPF heat sink with an axial-flow cooling fan on the thermal performance, a systematic experimental design based on the response surface methodology (RSM) is used. The thermal resistance and pressure drop are adopted as the thermal performance characteristics. Various designing parameters, such as height and thickness of fin, width of passage between fins, and distance between the cooling fan and the tip of fins, are explored by experiment. Those parameters affect the structure arrangement, geometry of fins and the status of impinging jet from an axial-flow cooling fan installed over the heat sink. A standard RSM design called a central composite design is selected as experimental plan for the four parameters mentioned above. An effective procedure of response surface methodology (RSM) has been proposed for modeling and optimizing the thermal performance characteristics of PPF heat sink with the design constrains. The most significant influential factors for minimizing thermal resistance and pressure drop have been identified from the analysis of variance. The confirmation experimental results indicate that the proposed model is reasonably accurate and can be used for describing the thermal resistance and pressure drop with the limits of the factors studied. The optimum designing parameters of PPF heat sink with an axial-flow cooling fan under constrains of mass and space limitation, which are based on the quadratic model of RSM and the sequential approximation optimization method, are found to be fin height of 60 mm, fin thickness of 1.07 mm, passage width between fins of 3.32 mm, and distance between the cooling fan and the tip of fins of 2.03 mm.  相似文献   

15.
液冷板冷却技术是解决高功率芯片热管理问题最有前途的技术之一,带翅片结构的液冷板具有低流阻、低热阻的优势,因而受到广泛关注。目前翅片结构多以实心为主,空心交错翅片对液冷板散热能力和压降等冷却特性的影响尚未得到系统的研究。对此,设计了空心交错翅片液冷板,采用数值模拟的方法研究进口温度和流量对液冷板流动换热特性的影响。模拟结果表明,空心翅片式液冷板具有良好的散热性能,随着进口温度的升高,液冷板温度不均匀性逐渐降低,但降低趋势有所减缓,而流量的增大对降低平均热阻有显著的作用,当进口流量超过1.2 L/min时,液冷板的平均热阻可低于0.04℃/W;然而,流量的增大也提高了流动阻力,当流量增大至1.7 L/min时,流体出口区域形成涡旋,产生回流区,不利于液冷板的散热效果,且流动阻力增大。  相似文献   

16.
The hydraulic and thermal performance of a plate-fin heat sink undergoing cross flow forced convection with the introduction of a shield was investigated. With a CFD numerical method, the influence of fin width, fin height, number of fins and Reynolds number were assessed without and with a shield. A shield that tends to decrease the bypass flow effect has a great influence on the variation of the thermal fluid field and the performance of the heat sink. The results of attaching a shield show that more coolant fluid is forced to flow into the fin-to-fin channel to enhance the heat transfer, increasing the pressure drop; this trend is significant at low Reynolds numbers. The decrease of thermal resistance due to the shield diminishes with increasing fin height, but increasing the width of the fins has a more radical effect. For a shield at a particular Reynolds number, the fin geometry should be selected carefully to fit the demands of enhanced effectiveness of heat transfer and decreased power consumption.  相似文献   

17.
High-performance and very compact heat sinks have been developed for effective cooling of VLSIs with high heat-generation densities. Their heat transfer and pressure loss characteristics in air-jet cooling have been experimentally studied. The highly compact heat sinks were plate-fin arrays with a very small fin pitch of 0.4–2.0 mm. The rectangular jet nozzle width that gave the highest cooling performance was 30 to 40% of the streamwise length of the heat sinks. The influence of fin height on heat transfer became weak when the ratio of the height to the thickness of the fin exceeded approximately 35. When the air flow rate was constant, the thermal conductance increased as the fin pitch decreased. For a constant fin pitch, heat sinks with smaller fin thickness showed larger thermal conductance at a given blower power consumption. In our experimental range, the heat dissipation rate per unit heat sink volume increased as the base plate area of the heat sink became small. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(6): 399–414, 1998  相似文献   

18.
Microchannel heat sink for high power laser mirror with water cooling was analyzed as a function of microchannel geometry and operation parameters. A comparative analysis of the thermal deformation on the mirror surface without cooling and that with cooling revealed that the maximal thermal deformation on the mirror surface could decrease from about 0.115 μm to around 0.040 μm under the laser power of 200 W/cm2 by using microchannel heat sink designed. In order to enhance the performance of microchannel heat sink, the effects of channel width, channel depth, fin width, mirror thickness and cooling region were investigated. The results indicated that the heat transfer performance of the microchannel heat sink could be further improved by narrow and deep channel, narrow fin, thin mirror and large cooling region.  相似文献   

19.
This paper numerically and experimentally investigated the liquid cooling efficiency of heat sinks containing micro pin fins. Aluminum prototypes of heat sink with micro pin fin were fabricated to explore the flow and thermal performance. The main geometry parameters included the diameter of micro pin fin and porosity of fin array. The effects of the geometrical parameters and pressure drop on the heat transfer performance of the heat sink were studied. In the experiments, the heat flux from base of heat sink was set as 300 kW/m2. The pressure drop between the inlet and the outlet of heat sink was set < 3000 Pa. Numerical simulations with similar flow and thermal conditions were conducted to estimate the flow patterns, the effective thermal resistance. It was found that the effective thermal resistance would reach an optimum value for various pressure drops. It was also noted that the effective thermal resistance was not sensitive to porosity for sparsely packed pin fins.  相似文献   

20.
In this technical note, the problem concerning the quantification of heat transfer rates from an array of longitudinal radiating fins of rectangular profile in a tube/fin ensemble to a nonzero temperature sink is investigated. Radiating fins constitute essential elements in the thermal control of spacecrafts and satellites. We consider quasi one-dimensional heat conduction in the longitudinal radiating fins and neglect radiative exchange between the fins and the tubes carrying a hot fluid. It is demonstrated that the governing nonlinear differential equation of second order with constant coefficients and nonhomogeneous can be solved in exact, analytical implicit form. The pertinent temperature distributions eventually provide the magnitudes of heat transfer rates and fin efficiencies influenced by the radiation–conduction parameter and the sink temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号