首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对复合关键层工作面开采后覆岩裂隙演化及瓦斯运移涌出耦合规律,以王家岭煤矿12313综放工作面为工程背景,通过研究工作面推进后覆岩活动、裂隙演化情况,得到工作面覆岩裂隙分布特征,建立数值模型,分析卸压瓦斯运移规律。最终将研究结果应用于12313综放工作面现场瓦斯治理及效果检验。结果表明:12313综放工作面复合关键层初次破断步距为49.84m,走向模型的垮落带和裂隙带组成的“两带”高度为121.1m,切眼侧和工作面一侧的裂隙区宽度分别为45.6m和44.6m,切眼和工作面的垮落角分别为62°和60°,倾向模型的垮落带和裂隙带组成的“两带”高度为115m,运输巷一侧和回风巷一侧的裂隙区宽度分别为37m和40m,运输巷和回风巷的垮落角分别为62°和63°;12313综放工作面施加“高位定向钻孔+回风巷埋管”抽采措施后,回采过程中上隅角最大瓦斯浓度能够保持在安全范围内,当埋管口深度为17.3m时,上隅角瓦斯浓度达到0.478%,有效解决了上隅角瓦斯超限及积聚问题,可为类似条件下采煤工作面瓦斯治理提供参考。  相似文献   

2.
为了探索双切顶成巷条件下采空区瓦斯综合治理方法,采用理论分析、数值模拟等方法,对双切顶成巷条件下顶板运移规律和采空区瓦斯分布规律进行研究,并提出了双切顶成巷条件下采空区瓦斯综合治理体系。研究结果表明,由于基本顶被切断,基本顶及其控制的覆岩充分垮落,采空区垮落带高度明显增加。当工作面回采过后,在预裂爆破切顶的影响下,与传统开采方法相比,采空区顶板岩层更快垮落,采空区上覆岩层更快趋于稳定;超高位裂隙带、靠近沿空留巷胶带巷处以及靠近采空区后部尾巷处为瓦斯主要聚集区域。4502工作面综合采用高位定向长钻孔抽采、留巷顶管抽采和采空区后补切眼钻孔抽采等方式,对采空区瓦斯进行治理,有效解决了采空区瓦斯超限问题。  相似文献   

3.
为了探究浅埋极薄煤层切顶卸压无煤柱开采与常规留煤柱开采覆岩运移与地表损伤区别,以子长矿区浅埋极薄煤层为背景,基于关键层理论,得到了硬岩破断距及覆岩的垮落高度临界值的计算公式,结合3DEC数值模拟及现场试验,对比分析了无煤柱开采与留煤柱开采条件下浅埋极薄煤层覆岩运移破断及地表损伤特征,确定了极薄煤层覆岩两带高度。结果表明:当工作面回采达到60 m时,两带发育高度基本稳定,当大于60 m时,工作面后方覆岩裂隙由开裂逐渐闭合,裂隙区随工作面回采向前方移动,两带高度稳定在24.6~27.7 m;相较于常规留煤柱开采,切顶留巷无煤柱开采方式下覆岩呈连续移动变形,可有效修复煤层开采工作面两侧非连续移动变形导致的覆岩裂隙及地表损伤裂缝,消除了常规留煤柱开采方式下相邻工作面间区段煤柱两侧覆岩裂隙,现场观测较好地验证了该结果。  相似文献   

4.
工作面开挖后,上覆岩层将发生破断及垮落.为获得3109综采工作面覆岩垮落、裂隙带高度,本文采用相似模拟方法试验了工作面开采过程中覆岩破断演化过程.结果表明:直接顶的初次破断是垮落带发育的主要原因,而老顶的第一次周期来压则造成垮落带再次发育,裂隙带高度在老顶初次破断前发育较为缓慢,而在老顶发生破断后快速增加,并最终逐渐趋于稳定,3109工作面垮落带发育高度约12.2 m,裂隙带高度约33.0 m.  相似文献   

5.
为了研究承压水体上切顶沿空留巷底板破坏特征,基于矿山压力、弹性力学理论,考虑了沿空留巷条件下沿倾向方向上一个工作面顶板提前垮落对上覆岩层的支承作用,分别构建了周期来压时采场底板力学计算模型,理论计算采后底板分别在走向方向与倾向方向的破坏形态;采用钻孔压水试验与直流电法观测等多种实测手段验证了奥灰承压水体上开采底板破坏深度。研究表明:(1)理论计算采后底板沿工作面走向和倾向破坏形态:常规留设煤柱开采方式分别呈"勺形"和"倒马鞍形"、切顶沿空留巷开采方式均为"勺形";(2)常规留设煤柱开采方式底板破坏深度最大位置在工作面超前位置,切顶沿空留巷开采方式底板破坏深度最大位置在沿空留巷侧;(3)理论计算切顶沿空留巷开采较常规留设煤柱开采最大底板破坏深度减小1.8 m,减小百分比为13.8%,现场实测中切顶沿空留巷工作面底板破坏深度分别比条件相近的采用常规留设煤柱方式开采的董家河煤矿22507工作面、王村煤矿13506工作面底板破坏深度分别减小了2.06 m与1.86 m,减少百分比分别为19.1%与17.5%。理论计算与现场实测均表明切顶沿空留巷开采较常规留设煤柱开采方式底板破坏深度有着明显的减...  相似文献   

6.
《煤矿安全》2016,(9):67-70
为解决工作面回采期间上隅角瓦斯超限问题,针对硫磺沟煤矿(4-5)04工作面实际情况,采用物理相似模拟方法,对工作面采动覆岩"三带"分布特征及规律开展研究,结合工作面实际情况设计高位钻孔抽采上隅角瓦斯,并对抽采瓦斯效果开展实时观测与分析。研究结果表明:(4-5)04工作面上隅角处的垮落角为71°左右且顶板裂隙较为发育;该工作面垮落带高度为25~26.8 m,断裂带高度为109.2~110 m,初次来压步距为36 m,周期来压步距平均为16.6 m,切眼附近裂隙区宽度约为40 m,回风巷及进风巷附近约30 m,工作面附近约20~40 m;高位钻孔抽采浓度为19.85%~23%,抽采过程中上隅角及工作面的瓦斯浓度分别为0.15%~0.48%及0.08%~0.45%,避免了回采期间上隅角瓦斯超限,保证工作面安全高效回采。  相似文献   

7.
阳煤集团寺家庄矿15106综采工作面瓦斯涌出量较大且具有突出危险性,针对该工作面上隅角瓦斯易超限的难题,基于工作面上覆岩层破坏的"O"型圈理论,提出了沿走向在顶板布置高抽巷进行瓦斯抽采的方法。为了探究高抽巷布置的最佳区域,首先应用理论计算及材料相似模拟的方法,得到采空区垮落带高度为0~20 m,裂隙带高度为20~60 m,弯曲下沉带高度为60 m以上;"O"型圈的导气裂隙圈在采动侧长为20 m;沿走向方向,开切眼侧破断角基本稳定在60°,回采侧破断角在43°~68°处波动,平均55°;当工作面推进距离与工作面长度相同时,沿倾向方向进风巷和回风巷破断角均为58°。应用Fluent软件分别模拟高抽巷与煤层顶板垂距为20、30、40 m,与回风巷内错距为30、40、50 m时的抽采效果,结果表明:高抽巷垂距为30 m、内错距40 m时,高抽巷内瓦斯体积分数最高,为21.2%,上隅角瓦斯体积分数最低,为0.54%。将试验所得方案应用于现场实践后,在回采初期,由于大裂隙尚未形成,上隅角瓦斯体积分数存在超限危险,随着工作面的推进,风排瓦斯量逐渐减小,高抽巷抽采瓦斯量逐渐升高;在进入正常抽采期后,上隅角瓦斯体积分数平均值约为0.6%,与模拟所得结果基本相符,该方案能够大幅缓解风排瓦斯的压力,有效解决上隅角瓦斯超限的问题。  相似文献   

8.

为解决特厚煤层综放开采工作面上隅角瓦斯超限的问题,采用物理相似模拟实验分析了典型高瓦斯特厚煤层的裂隙演化情况,同时,利用二维核密度估计方法研究了采场上方的瓦斯运储区分布规律,分析了钻孔抽采的最优层位,并进行现场工程应用。研究结果表明:采动覆岩的整体离层量呈开切眼侧高、工作面侧低的两峰分布,其中不规则垮落带高度为9.4 m,规则垮落带高度为38.0 m,裂隙带高度为158.0 m;瓦斯运储区呈动态的梯形分布,当推进至岩层发育稳定时,规则垮落带上部形成了明显的临时储集空间,该区域可作为瓦斯抽采优选层位,具体位置为距煤层顶板高10~40 m,距回风巷内5~40 m。试验周期内,上隅角瓦斯浓度出现了明显下降。

  相似文献   

9.
针对厚层软岩顶板沿空留巷的技术难题,提出厚层软岩顶板断顶充填沿空留巷技术,创建"断顶卸压+巷旁垮落充填"沿空留巷围岩协调控制方法,构建厚层软岩断顶充填沿空留巷数值模型,研究断顶角度和预制裂缝间距对实体煤壁支承应力、巷旁垮落充填体稳定性对覆岩变形规律的影响。研究结果表明:断顶角度为5°时,减小了充填体上方岩层回转变形的空间,减小了剪切破坏区,缓解了采空侧顶板下沉剧烈程度;预制裂缝间隔为1 m时,在工作面后方,顶板岩层预制裂缝能及时扩展贯通,在巷旁形成垮落充填结构,采空侧垮落岩体抑制上覆岩层的弯曲下沉,减弱应力集中,压力变化幅度较小。研究成果在常兴煤业取得成功应用,监测结果显示在工作面后方70~80 m处,围岩变形趋于稳定,顶板没有明显离层、错位现象,巷旁垮落充填体结构稳定。  相似文献   

10.
双柳煤矿煤层开采后上隅角大面积悬顶,且随工作面推进短期内不能及时垮落,造成采空区瓦斯积聚,在23(4)11回采工作面运巷端头顶板处施工水力预裂超前切顶孔,实现顶板及时跨落,并对预裂钻孔进行二次利用,通过封孔接入工作面高负压系统进行上隅角瓦斯抽采,瓦斯浓度平均下降0.16%,治理效果明显,实现了瓦斯与顶板共治.  相似文献   

11.
为解决深部近距离上保护层开采被保护层大量卸压瓦斯通过底板裂隙涌向首层采煤工作面极易造成瓦斯超限的问题,以平顶山天安煤业股份有限公司五矿为研究背景,采用理论分析、实验室实验、现场考察以及离散元数值模拟的手段,研究了深部近距离上保护层开采底板煤岩层裂隙瓦斯通道演化规律及下被保护层卸压瓦斯抽采时效性。研究表明:回采方向上底板煤岩层可分为原始应力区、卸压增透区和重新压实区,卸压增透区内煤体膨胀变形量大渗透率高,卸压瓦斯解吸扩散,底板采动裂隙使被保护层与采煤工作面贯通形成裂隙瓦斯通道。时间尺度上,卸压增透区的形成与上保护层回采到基本顶来压垮落时间段相对应,采动裂隙瓦斯通道伴随基本顶的破断垮落逐渐重新压实消失,卸压增透区范围在基本顶初次垮落前达最大值,回采推进期间与基本顶来压步距正相关。重新压实区域内煤岩层经历应力加载、卸荷、重新加载后可能出现损伤破坏,卸压瓦斯大量解吸引起煤体收缩变形,部分煤岩体受力比其原始应力更大出现压缩变形。卸压增透区是卸压瓦斯产生及运移的主要空间,也是进行卸压瓦斯拦截及抽采的高效区,瓦斯抽采工程需考虑采动裂隙演化的空间和时间效应。  相似文献   

12.
为了有效解决临近层卸压瓦斯通过采动裂隙扩散至本煤层工作面,导致采空区上隅角及工作面回风巷瓦斯浓度超限的问题。以某矿9103工作面为工程背景,采用理论分析与数值模拟相结合的手段,对工作面上覆岩层裂隙演化规律进行分析研究。研究表明:采用UDEC数值模拟软件分析工作面上覆岩层破坏时垮落带和裂隙带演化规律及裂隙带高度分布范围与理论计算结果基本一致,覆岩垮落带最大高度4.9 m,裂隙带最高13.44 m。基于此,确定了工作面覆岩高位钻孔设计方案:在9#煤层上方10 m位置的粉砂岩中,采用高位钻孔技术抽采瓦斯,整体抽采浓度较高,进一步验证了高位钻孔布置参数设计的合理性。  相似文献   

13.
直覆厚硬顶板无煤柱留巷技术   总被引:4,自引:0,他引:4       下载免费PDF全文
薛俊华  段昌瑞 《煤炭学报》2014,39(Z2):378-383
为解决10 m厚石灰岩直覆顶板开采隐存的采空区顶板大面积悬顶、瓦斯积聚超限及留设煤柱导致应力集中等灾害问题,提出无煤柱沿空预裂切顶留巷技术。对留巷巷道顶板实施超前预裂,切断巷道顶板与采空区直接顶、基本顶的联系,周期来压作用下沿预裂面垮断,构筑的充填墙体隔断采空区并支撑上位岩层,改善巷道围岩应力环境。基于该方法的无煤柱留巷关键技术已在晋城矿区得到推广应用。  相似文献   

14.
《煤》2017,(7):19-21
针对漳村煤矿2503工作面回采过程中上隅角超限问题,通过对工作面上覆岩层垮落特征分析,研究在回风巷顶板打设高位裂隙钻孔抽采采空区裂隙带瓦斯进行治理。回采过程中钻孔瓦斯抽采量随工作面推进先增大后减小,上隅角和回风流瓦斯涌出量逐渐降低,工作面上隅角瓦斯未出现超限现象。  相似文献   

15.
蔡峰 《中国煤炭》2024,(1):42-51
为实现低瓦斯高涌出矿井综放工作面安全高效开采,以王家岭煤矿为背景,结合物理相似模拟实验、UDEC数值模拟和微震监测,系统分析了王家岭煤矿综放工作面上覆岩层运动规律,在此基础上,开展了现场卸压区瓦斯抽采试验。研究结果表明:随工作面推进,煤层顶板上覆岩层垮落高度距煤层底板距离增大,离层裂隙距顶板距离增大,空洞高度减小;采空区两侧瓦斯运移通道的裂隙多于压实区的裂隙。初次来压前,采空区垂直应力随工作面的推进而降低;初次来压后,采空区垂直应力随工作面的推进而增大。在进、回风巷顶板,煤层、采空区顶底板共发生2 572个微震事件,工作面前方50 m范围内应力集中较大,应注意超前支护防范。12301工作面周期来压步距20~26 m,采动裂缝带高度90~110 m,周期来压4~6次。现场卸压区瓦斯抽采试验中,合理层位工作面瓦斯抽采量是其他层位工作面瓦斯抽采量的1.5倍,且工作面上隅角和回风流瓦斯浓度均小于0.8%,瓦斯治理效果显著。  相似文献   

16.
控制采动影响下瓦斯综治巷围岩稳定性是高瓦斯矿井亟待解决的支护难题,通过理论分析、数值模拟、现场试验等方法探究了切顶卸压技术在潘三矿瓦斯综治巷稳定性控制的实施效果。理论分析得出瓦斯综治巷所在岩层处于工作面开采后形成的裂隙带层位,巷道周边原有集中应力与工作面侧向采动支承压力叠加,引起瓦斯综治巷应力环境恶化,且采动应力场起主导作用。数值模拟研究表明实施运顺切顶卸压技术措施后,巷道两帮应力集中程度降低,应力集中系数减小,围岩破坏程度减弱,破坏范围减小,有效地改善瓦斯综治巷围岩应力环境。现场监测表明,实施切顶爆破技术措施后,对瓦斯综治巷的卸压保护效果有一定滞后,首个切顶炮孔前100m范围内瓦斯综治巷仍变形明显,但变形量随着切顶范围的增大逐渐减小,巷道维护状态逐渐改善;首个切顶炮孔前100m范围以外,远场卸压及应力阻断效果明显,瓦斯综治巷基本无剧烈变形破坏情况,巷道维护状态良好。  相似文献   

17.
针对低瓦斯厚煤层高强综放开采卸压瓦斯治理问题,采用物理模拟、数值分析和现场监测方法,研究工作面开采初期和稳定时期覆岩结构演化及裂隙场分布特征,揭示了考虑采动裂隙场的卸压瓦斯场分布特征;依据研究获得采动瓦斯聚集区分布,提出采用高位定向长钻孔治理采空区卸压瓦斯,并进行了效果检验。结果表明:工作面推进至135 m后,覆岩结构和裂隙演化基本稳定,垮落带发育高度为25~27 m,裂隙带发育高度为75~95 m,弯曲下沉带发育高度达到110 m左右;采动裂隙带瓦斯聚集区位于距回风巷25~55 m、高度距煤层顶板25~50 m范围内;高位定向长钻孔瓦斯抽采技术实施后,抽采平均浓度为5.8%,平均流量为0.71m~3/min,工作面上隅角和回风流瓦斯浓度均小于0.8%,瓦斯治理取得较好效果,为类似条件下的卸压瓦斯治理提供参考。  相似文献   

18.
为了给水体下急倾斜煤层开采防水煤柱的留设提供依据,采用数值计算和相似模拟的方法,考虑顶板水与岩层的耦合作用,对水体下急倾斜煤层开采的覆岩破断和导水裂隙的演化规律进行了研究,结果表明急倾斜煤层顶板的垮落沿工作面方向呈不对称分布,直接顶垮落后向下移动,工作面的上端形成冒落空洞;顶板在采空区上下边界煤柱侧断裂形成的断裂线随着垮落层位的增高而向上山方向移动;在顶板垮落初期,主要是沿煤层法线方向的移动,垮落后期顶板向下抽冒特征明显;导水裂隙的产生在竖直方向上的发育高度大于垂直岩层方向,同时沿煤层产生一定深度的裂隙漏斗。研究结论为水体下急倾斜煤层开采时防水煤岩柱的留设提供借鉴。  相似文献   

19.
耿铭  徐青云 《煤炭工程》2019,51(12):82-85
为了验证地面L型钻孔抽采采空区瓦斯效果,以塔山矿8214综放工作面为研究对象,采用数值模拟和理论分析相结合的方法,确定了抽放钻孔布置位置和钻孔结构,设计了L钻孔抽采瓦斯方案。研究结果表明:塔山矿8214综放工作面垮落带高度为35m,裂隙带高度为60m,顶板最大悬露空顶长度为45m,垮落角为45°国钻孔应布置在距采煤工作面顶板40~60m,距帮26~30m,有效解决了工作面上隅角和低位抽采巷的瓦斯超限的问题|钻孔的终孔始终位于工作面上隅角的后上方,有效解决了钻孔与工作面推进在瓦斯治理中的时空匹配问题,达到了高效稳定治理采空区瓦斯的目的。  相似文献   

20.
为解决高瓦斯综采工作面瓦斯超限问题,针对赵庄煤矿1307工作面实际地质条件和开采技术水平,提出在工作面顶板布置走向高抽巷抽采瓦斯。为合理布置高抽巷,通过修正经验公式进行理论计算,利用FLAC~(3D)模拟顶板覆岩运动,结合钻孔流量法现场观测得出垮落带最大高度为25.15 m,裂隙带最大高度为75 m,并确定高抽巷与煤层顶板垂距为30 m。通过对回风巷和高抽巷进行巷道应力分析,并考虑岩层垮落角的影响,选取高抽巷与回风巷水平错距为25 m。工程实践证明:高抽巷在抽采期间,抽采瓦斯纯量和浓度都保持在较高值,其大小波动受到工作面周期来压和地质条件影响;工作面回采期间,上隅角和回风巷瓦斯浓度都保持在较低值,避免了瓦斯超限问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号