首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
在本文中,首先通过水热法得到Zn O NWs,接着运用湿化学法得到刻蚀之后的Zn O NWs,不仅增大其比表面积,进而增加了该样品的光生载流子浓度,从而提高了其光电催化性能,因此,在1.23V vs RHE,刻蚀之后的光电流值为0.64 m A·cm-2,而原始的Zn O NWs的光电流密度为0.4 m A·cm-2,接着继续运用湿化学浸泡法,即可得到核壳结构的Zn O/Zn S NWs,壳层Zn S对核层Zn O有保护作用,这样就避免Zn O与电解液直接接触而发生光腐蚀,此外,由于Zn O和Zn S形成异质结,因此减少光生空穴与电子的复合,进而提高了该材料的光电性能,其光电流达到最大为1.42 m A·cm-2。  相似文献   

2.
采用简易的沉积-光还原的方法将Ag/Ag Cl纳米粒子负载到Bi2Mo O6微球上,制得Ag/Ag Cl/Bi2Mo O6异质结。分别采用XRD、SEM和UV-vis DRS对样品进行了表征。以罗丹明B(Rh B)为模拟污染物,考察样品的可见光光催化活性。结果表明,相比于Ag/Ag Cl和Bi2Mo O6,Ag/Ag Cl/Bi2Mo O6异质结的可见光催化活性明显提高,且Ag/Ag Cl负载量为40 wt%时,复合物的光催化活性最高。  相似文献   

3.
采用两步水热法制备出不同比例Bi_2WO_6-SrTiO_3异质结,对其进行XRD、SEM、BET、紫外可见漫反射(DRS)等表征测试。并在室温下以氙灯为光源,对不同比例Bi_2WO_6-SrTiO_3异质结进行吸附与光降解测试。结果表明20 mg/L甲基橙2 h内降解率最高可达95%,且对甲基蓝、刚果红均有降解效果。Bi_2WO_6与SrTiO_3形成了异质结结构有效的抑制了光生载流子与空穴的复合,增强了界面电荷传输效率,使光催化效率得到了提高。  相似文献   

4.
镧掺杂纳米二氧化钛的可见光光催化性能研究   总被引:1,自引:0,他引:1  
唐剑文 《应用化工》2009,38(7):1013-1016
采用经La2O3掺杂后的纳米TiO2粉末作为光催化剂,以300 W卤钨灯作为可见光光源,对水中的苯酚进行光催化降解,考察了La2O3不同的掺杂量、焙烧温度、pH值以及催化剂用量等因素对降解率的影响。实验结果表明:在光照射3 h后,纳米TiO2粉末在La掺杂量为0.5%,焙烧温度为600℃,pH为5,催化剂用量为1 g/L时的光催化活性最高,苯酚的TOC去除率为42.7%。  相似文献   

5.
以TiCl3为钛源,采用溶胶-凝胶法制备纳米TiO2粉体;掺杂过渡族元素锰进入TiO2晶体中,制成掺杂纳米TiO2粉体:采用XRD、SEM、EDS对TiO2粉体进行了表征;以甲基橙为模型物,考察了TiO2粉体作为光催化剂的光催化降解能力.结果表明,制备纳米TiO2的煅烧温度高于450℃,产品的粒度可达到纳米级;纳米Ti...  相似文献   

6.
《应用化工》2022,(6):983-985
利用水热法合成稀土Y(OH)3和Eu(OH)3纳米线,取一定稀土纳米线掺入以钛酸四丁酯为主要原料的溶胶-凝胶体系中,制备出不同煅烧温度不同稀土掺杂量的TiO2材料。以甲基橙为目标降解物,研究了该材料的光催化性能。结果表明,稀土的掺入量对材料的光催化性能有明显的影响,甲基橙的脱色率随着稀土掺入量的增加降低;不同煅烧温度也影响材料的光催化性能,实验条件下,煅烧温度较高的材料催化甲基橙的脱色率更高,当煅烧温度为600℃,Y(OH)3或Eu(OH)3纳米线掺入量为1%时,光催化效果最佳,光反应1 h后甲基橙的降解率可达99%以上。  相似文献   

7.
《应用化工》2015,(6):983-985
利用水热法合成稀土Y(OH)3和Eu(OH)3纳米线,取一定稀土纳米线掺入以钛酸四丁酯为主要原料的溶胶-凝胶体系中,制备出不同煅烧温度不同稀土掺杂量的TiO2材料。以甲基橙为目标降解物,研究了该材料的光催化性能。结果表明,稀土的掺入量对材料的光催化性能有明显的影响,甲基橙的脱色率随着稀土掺入量的增加降低;不同煅烧温度也影响材料的光催化性能,实验条件下,煅烧温度较高的材料催化甲基橙的脱色率更高,当煅烧温度为600℃,Y(OH)3或Eu(OH)3纳米线掺入量为1%时,光催化效果最佳,光反应1 h后甲基橙的降解率可达99%以上。  相似文献   

8.
铈掺杂纳米二氧化钛可见光光催化降解苯酚性能   总被引:1,自引:0,他引:1  
采用Ce(NO3)3掺杂改性后的纳米TiO2粉末作为光催化剂(Ce-TiO2),研究了Ce-TiO2在可见光条件下光催化降解苯酚的过程,考察了Ce掺杂量、焙烧温度、焙烧时间、pH值以及催化剂用量等因素对苯酚溶液光催化降解过程的影响。结果表明:可见光照射下,当Ce掺杂量为1.00%、焙烧温度为700℃、焙烧时间为3 h、反应溶液pH值为5、催化剂投加量为1.0 g/L时,苯酚的去除率达到最佳,为35.8%。  相似文献   

9.
综述了近年来纳米二氧化钛光催化剂共掺杂的研究进展。介绍了纳米二氧化钛光催化剂的作用机理,从促进二氧化钛可见光响应、抑制光生电子与空穴的复合、造成晶格缺陷,增加氧空位、提高二氧化钛光催化剂表面羟基含量等方面解释了纳米二氧化钛光催化剂掺杂改性的作用机理。分析比较了非金属与非金属共掺杂、非金属与金属共掺杂、金属与金属共掺杂等不同掺杂方式对二氧化钛光催化剂的催化性能影响,并对今后的研究方向提出了建议。  相似文献   

10.
采用水热法合成掺杂不同金属元素的片状TiO2纳米材料,对掺杂金属元素的纳米材料的光催化性质进行深入探讨,并对其光催化降解条件及对有机污染物甲基橙的光催化降解应用进行研究,进而选择最佳掺杂金属元素的TiO2纳米材料作为光催化剂。结果表明,Ni/Co共掺杂二氧化钛纳米片的催化降解有机染料甲基橙效果最佳,能在短时间内对有机染料进行有效降解,在紫外光照下其降解效率约为92%。  相似文献   

11.
以Bi(NO3)3和Na2Mo O4为原料,偕胺肟纤维作为配体,采用液相法合成钼酸铋/偕胺肟纤维(Bi2Mo O6/AOCF),通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、能谱(EDS)对样品进行了表征分析。结果显示,颗粒状的Bi2Mo O6均匀分布在纤维表面,并以配位键的形式与纤维结合。以罗丹明B(Rh B)为模拟污染物来考察Bi2Mo O6/AOCF的光催化活性,实验表明,Bi2Mo O6/AOCF有着很好的光催化活性,并且在酸性条件下的催化活性更好。催化剂对活性黄、亚甲基蓝和甲基橙也表现出较好的光催化活性,且重复使用5次后对Rh B的降解率仍可以达到91.4%。光催化反应过程符合一级反应动力学。  相似文献   

12.
近年来,环境污染问题越来越严重,光催化技术在处理污水和净化空气等方面发挥着重要的作用。本文通过差示扫描量热仪、电子万能拉伸试验机、可见分光光度计等仪器,主要研究不同纳米TiO2用量对PA6/TiO2-GO复合材料的热学性能、力学性能、光催化性能等的影响。通过研究发现:随纳米TiO2含量的增加,PA6/TiO2-GO复合材料的熔点逐渐降低,结晶度先增大后减小(复合材料的结晶度均大于纯PA6的结晶度);断裂强度逐渐减小,断裂伸长率逐渐增大;纳米TiO2对亚甲基蓝溶液的光催化降解能力越来越强。在相同纳米TiO2含量下,加入GO后能有效提高TiO2的光催化降解能力,光催化降解能力能提高10%左右。  相似文献   

13.
夏娟  吴福芳  张琳 《广东化工》2016,(24):25-26
本课题利用水热法一步合成了钼酸铋(Bi_2Mo O_6)和钨酸铋(Bi_2WO_6)两种半导体光催化剂。借助红外光谱(IR)、X射线衍射光谱(XRD)和扫描电子显微镜(SEM)对样品的物相结构、表面结构进行了表征。以罗丹明B为目标降解物,借助太阳光为光源,研究了两种催化剂材料在不同光催化时间下对有机染料的光催化性能影响。结果表明,纳米片结构的Bi_2WO_6对有机染料的降解综合性能要优越于纳米线团簇结构的Bi_2Mo O_6材料,尤其是Bi_2WO_6催化剂对罗丹明B染料的降解度在光催化5小时后可以达到80%。  相似文献   

14.
为提高TiO2的可见光光电催化活性,本文用Bi2MoO6和碳量子点(CQDs)对TiO2纳米管阵列(TNA)进行了改性。以CQDs、Bi(NO3)3·5H2O和Na2MoO4为原料,通过简单的溶剂热法,在TNA中沉积了CQDs和Bi2MoO6,成功制备了新型Bi2MoO6@CQDs/TNA。扫描电镜(SEM)和元素mapping分析结果表明,CQDs和Bi2MoO6成功涂覆在TNA管壁上。通过在可见光下降解甲基橙(MO)溶液,评价了所制备的光催化剂的光电催化性能。结果显示,经3 h的光电催化降解,Bi2MoO6@CQDs/TNA对MO的去除率比Bi2MoO6/TNA高32%。CQDs优异的上转换光致发光(UCPL)性能促进了TiO2在可见光下被激发产生光生载流子,同时Bi2MoO6与TiO2的耦合抑制了光生载流子的复合,从而提高了Bi2MoO6@CQDs/TNA的光电催化活性。  相似文献   

15.

In this study, a double Z-type Bi2MoO6/ZnSnO3/ZnO heterostructure photocatalyst was prepared by hydrothermal method to realize effective charge separation and improve photocatalytic activity. The synthesized samples were carefully examined by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, photoluminescence (PL), and other analytical techniques. Meanwhile, the photocatalytic performance was further evaluated by multi-mode photocatalytic degradation with crystal violet (CV). The results show that the composite material has a relatively homogeneous cubic structure in size and shape. In the cubic structure, a heterogeneous structure exists between Bi2MoO6, ZnSnO3 and ZnO. Simultaneously, the dramatic changes in physical morphology, such as the specific surface area and particle size of the composites, led to a series of unique properties, such as a significant climb in light absorption properties and superior photocatalytic activity. In addition, compared to ZnO, Bi2MoO6 and ZnSnO3/ZnO, the Bi2MoO6/ZnSnO3/ZnO composite material shows lower PL intensity, smaller arc radius, and stronger photocurrent response. Meanwhile, Bi2MoO6/ZnSnO3/ZnO shows higher photocatalytic efficiency for CV and tetracycline hydrochloride (TC), and maintains good stability after 3 cycles of photodegradation experiments. Based on experimental results, the existence of heterojunctions between ZnO, ZnSnO3 and Bi2MoO6 and the possible photocatalytic mechanism for the degradation of CV by dual Z-scheme composites are proposed. In conclusion, this study provides a feasible strategy for the photocatalytic degradation of organic pollutants by introducing ZnSnO3 and Bi2MoO6 to successfully construct composite catalysts with dual Z-scheme heterostructures.

  相似文献   

16.
褚佳欢  汤嘉成  朱媛  张进 《无机盐工业》2022,54(11):131-136
结合热缩聚法和水热法制备了g-C3N4/Bi2MoO6复合光催化剂,利用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附-脱附曲线、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等分析测试技术对材料的结构和性能进行了表征,研究了材料光催化降解罗丹明B(RhB)的效果。结果表明,与纯Bi2MoO6相比,g-C3N4/Bi2MoO6复合材料提高了对可见光的吸收能力,减小了带隙宽度,在可见光激发下提高了降解RhB的光催化活性。其中,5% g-C3N4/Bi2MoO6复合材料对RhB的降解率最高,在可见光照射180 min对RhB的降解率为93%;而同样条件下Bi2MoO6对RhB的降解率为58%。重复性实验表明,复合材料在RhB光降解过程中是稳定的,具有较好的应用潜力。  相似文献   

17.
梁建军  杨良保 《辽宁化工》2007,36(5):292-295
通过沉淀-浸渍法,利用TiCl4与(NH4)6Mo7O24.4H2O制备了基于MoO3改性TiO2光催化剂。以亚甲基蓝为模型化合物考察了改性方法与MoO3含量对TiO2光催化性能的影响,并通过XRD、UV、IR对改性前后TiO2的晶体结构与光谱特征进行了表征。结果表明焙烧前MoO3改性能够提高TiO2的光催化性能,且MoO3含量为3%时MoO3/TiO2光催化效果最佳;MoO3改性明显改变了TiO2的吸收光谱特征,但是其晶体结构仍以锐钛相存在。  相似文献   

18.
以Bi(NO3)3·5H2 O和(NH4)6 Mo7 O24·4H2 O分别作铋源和钼源,加入尿素作pH调节剂,采用水热法制备了Bi2MoO6/埃洛石(Bi2MoO6/Hal)复合光催化剂,以亚甲基蓝(MB)溶液为目标降解物,在氙灯照射下研究了Bi2 MoO6/Hal复合材料的光催化性能及埃洛石对提升Bi2 MoO6降解污染物能力的作用,并利用XRD和TEM方法对样品的晶体结构、微观形貌进行了表征.结果表明,在水热温度140℃条件下制得的Bi2 MoO6/Hal复合光催化剂具有良好结晶性和特殊的二维层状/一维管状结构,Hal能显著提升Bi2 MoO6的光催化降解能力,光照180 min,复合材料对浓度为20 mg/ L、25 mg/ L 和30 mg/ L 的MB 溶液降解率分别为100% 、95.1% 和87.3%.  相似文献   

19.
戎琦  邱夷平 《纤维复合材料》2006,23(2):13-15,24
通过对超厚三维正交机织复合材料及二维机织层合板分别进行拉伸和压缩实验,研究比较两复合材料刚度和强度特性的差异;研究发现无论是三维机织材料的拉、压,还是二维层合板的拉、压的应力一应变曲线都可近似为直线关系,而且具有脆性破坏的特点;三维复合材料的拉、压强度要高于二维层合板,是由于不同的增强相结构及纤维含量造成;不同的破坏模式对材料强度影响很大。  相似文献   

20.
《Ceramics International》2023,49(2):2149-2156
Photocatalytic degradation is an ecologically benign method of reducing organic contaminants in wastewater. To remove the pollutant 1-naphthol, highly efficient 0D/2D Bi2MoO6/g-C3N4 heterojunctions were successfully assembled by a one-step hydrothermal method, where zero-dimension (0D) Bi2MoO6 nanoparticles were firmly bonded to two-dimension (2D) g-C3N4 nanosheets. 0D/2D Bi2MoO6/g-C3N4 exhibited exceptional degradation efficiency for 1-naphthol with a removal rate of 81.5% after 60 min of visible light irradiation. The enhanced photocatalytic ability was attributed to the matched band structures and tightly connected heterojunctions, which effectively prevented the recombination of photogenerated carriers. Besides, the photodegradation mechanism was revealed by investigating the catalysts' crystal phase, morphology, physicochemical and optical properties. This work introduces a novel method for one-step preparation of 0D/2D photocatalysts and advances the utilization of photodegradation for organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号