首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
混合制冷剂(MR)组分是影响天然气液化流程性能的最重要因素之一。在某些特定的液化天然气(LNG)装置中,丁烷和戊烷等重组分不受欢迎。研究了以下4种混合制冷剂组分用于单混合制冷剂(SMR)流程的效果:含有异丁烷(C4)和异戊烷(C5)的MR;不含C4的MR;不含C5的MR;不含C4和C5的MR。对各流程的比功耗进行了对比。结果表明,相比于异丁烷,异戊烷对降低能耗的贡献更大;另外,工况1的能耗比工况4低18%。更进一步地,提出了采用不同制冷剂进行预冷的SMR流程。对于工况4,采用丙烷预冷的流程能耗可降低12%。  相似文献   

2.
贾荣  林文胜 《化工学报》2015,66(Z2):379-386
混合制冷剂(MR)组分是影响天然气液化流程性能的最重要因素之一。在某些特定的液化天然气(LNG)装置中,丁烷和戊烷等重组分不受欢迎。研究了以下4种混合制冷剂组分用于单混合制冷剂(SMR)流程的效果:含有异丁烷(C4)和异戊烷(C5)的MR;不含C4的MR;不含C5的MR;不含C4和C5的MR。对各流程的比功耗进行了对比。结果表明,相比于异丁烷,异戊烷对降低能耗的贡献更大;另外,工况1的能耗比工况4低18%。更进一步地,提出了采用不同制冷剂进行预冷的SMR流程。对于工况4,采用丙烷预冷的流程能耗可降低12%。  相似文献   

3.
杨青虎 《广州化工》2014,(11):42-43
单混合制冷剂(SMR)液化工艺流程具有流程相对简单,单位体积制冷剂的制冷能力高,系统的能耗低的优点。本文在对哈纳斯液化工厂的流程进行热力学分析的基础上,对流程进行分析,计算了流程中各设备的损失,分析产生损失的原因,提出降低损失的措施。  相似文献   

4.
为了降低天然气液化工厂中液化单元双循环混合制冷剂天然气液化流程(DMR)的功耗,文中采用化工过程模拟软件HYSYS建立了优化计算模型,该模型以系统最小功耗为目标函数,以混合制冷剂压力和配比为决策变量,选取了一种典型的天然气组分对DMR液化流程进行了优化模拟,得到了流程中各点的状态参数、最优操作参数和最优混合制冷剂配比。在优化过程中发现,优化的实质是:在满足各换热器最小温差情况下,通过对混合冷剂配比和流程参数的优化使各换热器内的平均换热温差尽可能减小。此外,在保证99.6%的高天然气液化率的情况下,文中得到流程的单位质量天然气的液化功耗为271 kW/t,液化■效率为45.4%,与国内现行的DMR流程功耗相比,能耗显著降低。  相似文献   

5.
C3/MRC液化流程中原料气成分及制冷剂组分匹配   总被引:1,自引:0,他引:1  
赵敏  厉彦忠 《化工学报》2009,60(Z1):50-57
针对两种代表性原料天然气No.1和No.2,利用Aspen HYSYS流程模拟软件对C3/MRC天然气液化流程进行了动态模拟,考虑了混合制冷剂高低压变化、混合制冷剂组分改变,通过模拟研究获得了混合制冷剂各个组分N2、CH4、C2H6及C3H8在制冷系统中的不同作用,同时获得了制冷剂组分与混合制冷剂高低压以及原料天然气cp-T之间的依赖关系,全面动态地展示了制冷剂各组分在C3/MRC流程中的影响和作用。在此基础上,又对比了原料天然气No.1和No.2在不同混合制冷剂高低压下C3/MRC流程的能耗指标。研究结果表明:原料天然气的cp-T关系是决定整个C3/MRC流程能耗高低的关键因素,而混合制冷剂的组分或高低压的选择则对系统能耗影响较弱。混合制冷剂的组成及其高低压力的选择应根据原料天然气的cp-T关系进行合理选取,以确保流程设计更为合理。  相似文献   

6.
孙恒  丁贺  刘丰 《化学工程》2014,(3):75-78
对于采用混合冷剂制冷的液化天然气(LNG)装置,当环境温度变化时通过装置运行的优化操作,可以有效起到节能的效果。文中将设备变工况运行的模拟计算与基于HYSYS软件的工艺计算相结合,建立了单混合制冷剂循环(SMR)天然气液化装置的运行优化模型。优化运算的目标函数为运行能耗最低,寻优变量包括冷剂的摩尔流量和组分,采用Box算法进行求解。针对典型算例进行了环境温度变化时SMR装置的运行优化研究。优化结果表明:当环境温度降低时,运行优化可以有效降低SMR装置的能耗,但仍高于设计优化的结果。给出了运行优化后的工艺参数和冷剂组分,并与设计优化的结果进行了比较,一般运行优化所得冷剂摩尔流量较大,但是冷剂组分更轻。  相似文献   

7.
撬装型混合制冷剂液化天然气流程的热力学分析   总被引:4,自引:2,他引:2       下载免费PDF全文
从热力学的角度出发,详细分析了撬装型混合制冷剂液化流程SP-MRC的关键参数对流程性能(包括比功耗、液化率、比制冷剂流量和比冷却水负荷)的影响。这些关键参数包括:分离器S1和S2的温度;高压制冷剂和低压制冷剂的压力;天然气的入口压力和LNG的储存压力;天然气的组分;混合制冷剂的组分。  相似文献   

8.
采用Aspen Plus化工模拟软件对混合制冷剂液化天然气过程进行全流程的模拟计算,并对各个单元设备进行有效能分析。结果表明:压缩机的有效能损失占整个流程有效能损失的63.8%,换热过程占19%,是流程中的节能重点。在流程模拟的基础上,以高压制冷剂的压力和温度、低压制冷剂的压力和温度及混合制冷剂中甲烷与正戊烷的摩尔含量为可变因素,分析了这些因素对各设备有效能损失的影响,找出相应的影响规律,并提出了相应的降低体系有效能损失的措施与建议,对整个工艺过程的节能降耗具有一定的指导作用。结果表明:提高高压制冷剂的压力、低压制冷剂的压力与温度和混合制冷剂中正戊烷的含量,以及降低高压制冷剂的温度与混合制冷剂中甲烷含量的含量,有助于降低整个流程的有效能损失。  相似文献   

9.
李彩云  王晓军 《广东化工》2014,41(21):100-101
与级联式、丙烷预冷液化流程相比,双循环混合制冷剂液化流程在功率消耗、生产率等方面有了更明显的改善,使液化循环更高效、能耗更低。文章对双循环混合制冷剂液化流程用HYSYS软件进行模拟,针对天然气和混合制冷剂的物性特点,选用P-R方程作为计算这两类混合物的状态方程,并分析不同组分配比、天然气压力及预冷温度等对冷剂循环量、压缩机功耗、液化率等的影响。  相似文献   

10.
混合制冷剂循环的级数对制冷性能的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
混合制冷剂制冷循环可以提高制冷系统的效率,广泛应用在天然气液化领域。混合制冷剂的循环级数对制冷性能影响很大。针对不同级数的混合制冷剂循环进行热力学分析,建立了流程中主要设备的热力学模型,模拟计算了采用不同级数的混合制冷剂循环的天然气液化流程,得到不同级数的制冷循环的主要参数:制冷压缩机的功耗、制冷系数和火用效率。结果表明,制冷循环的级数增加,制冷系统的功耗降低,制冷系数和火用效率增加,但是级数增加对制冷性能的影响减小。制冷循环的级数增加会增加流程的复杂性,降低可操作性,不同规模的制冷系统的最优级数不同,规模越大,最优级数就越多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号