首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
通过静电纺丝的方法制备以月桂酸和硬脂酸二元低共熔物(LA-SA)为固-液相变材料,聚丙烯腈(PAN)为基体的超细纤维。研究最佳静电纺PAN纤维的纺丝工艺参数,纺丝溶液中不同LA-SA含量对复合纤维的形貌结构影响。确定最佳静电纺PAN纳米纤维的工艺参数(纺丝电压15KV,接收距离20cm,纺丝液流速1ml/h)。SEM观察表明:随LA-SA含量的增加,复合纤维的平均直径逐渐增大;当复合纤维中LA-SA含量较高时,纤维表面变得不光滑,并呈现褶皱的形貌特征。  相似文献   

2.
利用正交设计实验,对影响静电纺制备玉米醇溶蛋白纳米/亚微米纤维的4个主要因素(蛋白质的质量分数、电压、挤出率和纺丝距离)在4个水平上进行优化筛选,获得了最佳纺丝工艺条件:蛋白质质量分数为26%、电压为20 kV、挤出率为0.027 mL/min、纺丝距离为15 cm.在4个因素中,质量分数对纤维直径的影响最为显著.  相似文献   

3.
静电纺丝法制备醋酸纤维素纳米纤维   总被引:2,自引:0,他引:2  
静电纺丝是一种利用聚合物溶液或熔体在强电场作用下形成喷射流进行纺丝加工的工艺,是一项制备纳米级纤维材料简单有效的技术.本文以六氟异丙醇和甲酸为溶剂,对静电纺丝制备醋酸纤维素纳米纤维的影响因素进行探讨,研究溶剂、电压、浓度及接收距离对纳米纤维形貌和直径的影响.研究结果表明:以六氟异丙醇(HFIP)为溶剂,当纺丝液浓度为8%、电压为15—20kV、接收版距离为16cm时,可以静电纺丝制得直径300nm的明胶纳米纤维.在本实验设定的静电纺丝基本参量范围内,醋酸纤维素溶液的浓度越大,纤维直径越大;接收距离越大,纤维直径也越大,而且容易产生纺锤状纤维;电压越大,纤维直径越小.  相似文献   

4.
聚焦接收电极制备定向排列纳米纤维阵列   总被引:1,自引:1,他引:0  
以聚丙烯腈(PAN)/N,N-二甲基甲酰胺(DMF)溶液为纺丝原液,利用静电纺丝方法制备纳米纤维,采用聚焦电极作为纳米纤维接收装置,研究了不锈钢棒数量、接收距离、溶液浓度、溶液流速、电压以及电极转速等参数对于纺丝过程及纤维沉积形态的影响规律。选用聚焦电极作为纳米纤维接收装置不仅可以使获得的纤维集合体呈现悬浮状态,而且使纤维能够定向排列,为扩大静电纺纳米纤维的研究应用提供了便利条件。  相似文献   

5.
水溶性纳米级纤维毡的纺制工艺   总被引:8,自引:0,他引:8  
静电纺丝是制备超细纤维和纳米纤维的新方法。静电纺丝能纺制直径在几十纳米至几微米之间的纤维并使其形成无纺布状的纤维毡。本实验在研制静电纺丝装置的基础上,以水溶性高聚物聚乙烯醇水溶液为纺丝液,制得直径在100nm~600nm的纤维。通过调节电压、纺丝液浓度及喷丝口与接收屏之间的距离等工艺参数得到不同粗细的纳米级纤维毡,研究了静电纺丝过程和工艺参数与纤维的表面形态特征之间的关系。研究结果表明,只有在一定的条件下,才能纺得稳定的和粗细均匀的纳米级纤维。  相似文献   

6.
研究多面体倍半硅氧烷(POSS)改性聚氨酯纳米复合材料的制备方法,并采用静电纺丝技术制备POSS-PU纳米纤维膜.通过改变纺丝电压、纺丝液浓度、接收距离、挤出速率、POSS浓度,借助扫描电子显微镜分析了各参数对纤维形貌的影响.分析结果表明:DMF/THF混合溶剂质量比为1∶2、电压为20 k V、接收距离为20cm和挤出速率为0.8 m L/h时所制得的纳米纤维膜形貌最好.而且POSS的加入有助于纳米纤维的细化.  相似文献   

7.
应用静电纺丝法制备了表面光滑平整、纤维细度均匀的PVA纳米纤维膜.采用扫描电镜观察方法,研究了溶液浓度、电压强度、注射速度、接收距离对纤维微观形貌的影响,得到了PVA溶液静电纺丝比较合适的工艺参数:溶液浓度8%,电压强度16 kV,注射速度0.020 ml/min,接收距离15 cm.  相似文献   

8.
以无水乙醇为溶剂,聚乙烯吡咯烷酮和正硅酸乙酯为原料,通过溶胶-凝胶法制备纺丝前驱体,然后利用静电纺丝技术得到电纺纤维,再经煅烧处理后得到外径150nm左右的二氧化硅纳米管。通过场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)研究电纺纤维和二氧化硅纳米管的形貌,利用傅里叶转换红外光谱(FTIR)和X-射线多晶粉末衍射仪(XRD)证明二氧化硅纳米管的形成。结果显示:当纺丝参数分别为电压10kV、流速1.5mL/h、接收距离14cm,原料配方为:聚乙烯吡咯烷酮1.5g、无水乙醇16mL、正硅酸乙酯3.2mL时,获得的电纺纤维和二氧化硅纳米管均具有良好的形貌。  相似文献   

9.
以苯乙烯-丁二烯-苯乙烯(SBS)和过氧化氢为原料,制备环氧基质量分数为10%的环氧化SBS(ESBS).利用红外光谱对ESBS结构进行表征.通过研究纺丝溶剂、纺丝液质量分数、外加电压和接收距离等对纤维形态结构的影响,制备纳米级到微米级ESBS电纺纤维.结果表明四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)混合溶剂是电纺ESBS的优良溶剂.在THF/DMF(质量比=3∶1)纺丝溶剂,纺丝液质量分数为10%,外加电压23kV及接收距离28cm时,所制得ESBS电纺纤维形态较好,纤维平均直径为302nm,最小直径可达70nm.  相似文献   

10.
以无水乙醇为溶剂,聚乙烯吡咯烷酮和正硅酸乙酯为原料,通过溶胶-凝胶法制备纺丝前驱体,然后利用静电纺丝技术得到电纺纤维,再经煅烧处理后得到外径150 nm左右的二氧化硅纳米管。通过场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)研究电纺纤维和二氧化硅纳米管的形貌,利用傅里叶转换红外光谱(FT-IR)和X-射线多晶粉末衍射仪(XRD)证明二氧化硅纳米管的形成。结果显示:当纺丝参数分别为电压10 kV、流速1.5mL/h、接收距离14cm,原料配方为:聚乙烯吡咯烷酮1.5g、无水乙醇16mL、正硅酸乙酯3.2mL时,获得的电纺纤维和二氧化硅纳米管均具有良好的形貌。  相似文献   

11.
静电纺丝技术是目前制备纳米纤维最直接有效的方法,首先简要介绍静电纺丝技术制备纳米纤维的原理及影响所制纳米纤维形貌的因素,然后概括静电纺丝技术在医学、环境保护等方面的应用,详述静电纺丝技术所面临的纳米纤维有序排列、纳米纤维成纱和静电纺技术产业化等一系列难题,并提出了现有的较好的解决方法,最后从理论和应用两方面对静电纺的发展趋势做出展望。  相似文献   

12.
为研究静电纺丝工艺对CS/PVP纳米纤维膜纤维形貌和直径的影响,以甲酸为溶剂配制质量分数为4%的CS溶液,以无水乙醇为溶剂配制质量分数为35%的PVP溶液,将PVP溶液与CS溶液按质量比90∶10混合,搅拌均匀作为纺丝液,调节纺丝电压、接受距离和纺丝速率分别制备纳米纤维,借助扫描电镜(SEM)观察制备的纳米纤维形貌.结果表明,在选定的纺丝工艺参数中,纺丝电压对纤维的形貌和直径影响较大,而纺丝速率和接受距离对纤维的形貌和直径影响相对较小;当纺丝电压为18 k V、接受距离为12 cm、纺丝速率为0.2 m L/h时,纤维形貌较好.  相似文献   

13.
为制备一种在包装和过滤领域有着良好应用前景的先进复合材料,采用静电纺丝的方法制备出PVA/PA6复合纳米纤维,对其在静电场中的成型性进行了系统的分析与研究.研究结果表明,随着溶液质量分数的增加,纤维的形貌变好,直径变粗;随着纺丝电压与喷丝流量的增加,纤维的平均直径变细,珠状物逐渐减少;随着接收距离的增加,纤维的平均直径变粗,珠状物增多.  相似文献   

14.
电子纺丝能获得纳米级纤维,采用不同收集方法可以使纤维呈功能性形态结构。根据上述两个特点,可利用电子纺丝法制备细胞支架、伤口包覆材料、功能性隔膜、人造导管等生物医用制品,文章主要介绍其在医学领域的应用研究现状。  相似文献   

15.
以聚乙烯吡咯烷酮的乙醇溶液与钛酸正丁酯为前驱体溶液,采用静电纺丝法制备氧化钛复合纤维,经空气中水解聚合、浸水和煅烧等后处理分别得到表面粗糙的氧化钛复合纤维和氧化钛无机纤维;采用扫描电子显微镜(SEM)、红外光谱仪(FTIR)、热重分析仪(TG)对所制得纤维的表面形貌、结构和组成进行表征.结果表明:初纺的氧化钛复合纤维经过与空气中水分进行水解聚合后,纤维内部形成了不溶于水的骨架结构,使其浸水后仍能保持纤维形貌;同时复合纤维中水溶性成分的去除,使纤维表面形成粗糙结构,这种纤维的表面粗糙结构可通过不同温度煅烧进行调节,同时煅烧后得到氧化钛无机纤维.  相似文献   

16.
静电纺丝法制备微孔Mn2O3微/纳米纤维及纤维结构表征   总被引:2,自引:1,他引:1  
以聚乙烯吡咯烷酮(PVP)为络合剂与醋酸锰Mn(CH3COO)2]反应制得前驱体溶液,用静电纺丝法制备了PVP/Mn(CH3COO)2纤维,经煅烧得到具有微孔结构的Mn2O3微/纳米纤维.对所制备纤维的结晶度、纯度和表面形貌,分别采用差热-热重分析(TGDTA)、红外光谱分析(IR)、X射线衍射(XRD)分析、扫描电镜(SEM)等手段进行了表征.结果表明:煅烧前后纤维的结晶度和形貌发生很大变化.  相似文献   

17.
将静电纺丝技术制备的碳纳米纤维(CNFs)作为衬底材料,利用水热方法,通过改变水热反应温度和反应溶液浓度进行对比实验,得到制备碳纳米纤维(CNFs)与氧化锌(ZnO)复合材料的最佳方法.将获得的产物通过场发射电子扫描显微镜(FE-SEM)和X射线粉末衍射(XRD)检测,结果显示,ZnO纳米粒子成功的生长在CNFs表面上,而没有聚集在一起,生长在CNFs表面上的氧化锌纳米粒子的密度可通过反应溶液的浓度控制.  相似文献   

18.
采用静电纺丝技术制备了PVP/[Y(NO3)3+Ce(NO3)3+Al(NO3)3]复合纳米纤维,对其进行焙烧,得到了结构新颖的Y3Al5O12:Ce^3+(简称为YAG:Ce^3+)纳米纤维。XRD分析表明,PVP/[Y(NO3)3+Ce(NO3)3+Al(NO3)3]复合纳米纤维为非晶态,经900℃焙烧8h,获得单相石榴石型的YAG:Ce^3+纳米纤维,属于立方晶系,空间群为Ia3d。SEM分析表明,PVP/[Y(NO3)3+Ce(NO3)3+Al(NO3)3]复合纳米纤维表面光滑,直径为210-300nm;YAG:Ce^3+纳米纤维直径为90~125nm,长度大于100μm。荧光光谱分析表明,在460nm蓝光激发下,YAG:Ce^3+纳米纤维发射出波长为525nm的黄光,属于Ce^3+的5D0→7F1跃迁。  相似文献   

19.
One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.  相似文献   

20.
静电纺丝技术制备一维纳米纤维是一种有效、便捷的方法.通过高压静电装置提供静电力作为驱动力,使溶液以细流状喷射,经溶剂蒸发,在收集板上得到一维纳米纤维.溶液粘度、纺丝电压和固化距离是影响纤维性能的主要因素,因此,对纤维制备过程参数的调控及装置的改进成为静电纺丝技术研究的热点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号