首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pt催化丙烷脱氢过程中结焦反应的粒径效应与Sn的作用   总被引:1,自引:0,他引:1  
用乙二醇还原法制备了Pt颗粒平均粒径分别为2.0、4.6、12.1 nm的Pt/Al2O3催化剂,同时用浸渍法制备了PtSn/Al2O3双金属催化剂,并考察了各催化剂在丙烷脱氢过程中的结焦行为。分别用H2化学吸附、透射电镜、热重分析、元素分析、红外光谱、拉曼光谱等手段对催化剂进行了表征。表征结果显示,催化剂金属上的结焦速率与Pt金属颗粒粒径密切相关。具有较小Pt颗粒的催化剂金属上的结焦速率明显大于具有较大Pt颗粒的催化剂。具有较小Pt颗粒的催化剂上生成的焦含有较少的氢,其石墨化程度也较高。本研究中PtSn/Al2O3催化剂金属上的结焦速率高于Pt/Al2O3催化剂,并且在双金属上生成的焦具有更高的石墨化程度。结合Pt/Al2O3催化剂上的结焦机理,对高性能丙烷脱氢催化剂提出了新的概念设计。  相似文献   

2.
The deactivation of CoMo/Al2O3 in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) was investigated under laboratory conditions that allowed the accelerated deposition of coke on the catalyst. The coke deposition was enhanced at low H2 pressures and when naphthalene was added to the reaction solution. Characterization of deactivated catalysts by elemental analysis (EA) and temperature-programmed oxidation (TPO) identified two types of carbonaceous species deposited on the catalysts, the reactive and the refractory species. The refractory deposit, or hard coke, was a major contributor to the deactivation and, therefore, the amounts of hard coke present on the catalyst determined the overall activity. A correlation was established in this study between the activity and the amounts of deposited hard coke based on the results of accelerated deactivation treatment. A similar relation was also observed between the two parameters when the catalyst was used in an industrial process for long periods. The above findings suggest that the reaction periods of two different scales, i.e., in laboratory and industrial processes, can be correlated with each other based on the amounts of hard coke when coking is the major mechanism of catalyst deactivation.  相似文献   

3.
Pt–Sn/γ-Al2O3 catalysts with different Sn loadings were prepared by incipient wetness coimpregnation of γ-Al2O3 with H2PtCl6 and SnCl2. The Pt–Sn interaction was tested by temperature-programmed reduction and the catalytic activity was measured by cyclohexane dehydrogenation. The catalysts were coked by cyclopentane at 500 °C and totally or partially decoked with O2 at 450 °C or O3 at 125 °C. Coke deposits were studied by TPO and the catalytic activity of coked catalysts, partially or totally regenerated, by cyclohexane dehydrogenation.The TPO with O3 shows that coke combustion with O3 starts at a low temperature and has a maximum at 150 °C, that is a compensation between the increase of the burning rate and the rate of O3 decomposition when increasing the temperature. Meanwhile O2 burns coke with a maximum at 500 °C. When performing partial decoking with O3 (125 °C) the remaining coke is more oxygenated and easier to burn than the coke that remains after decoking with O2 (450 °C).After burning with O3 the dehydrogenation activity of the fresh catalyst is recovered, while after burning with O2 the activity is higher than that of the fresh catalyst. The burning with O3 practically does not change the original Pt–Sn interaction while the burning with O2 produces a decrease in the interaction, producing free Pt sites with higher dehydrogenation capacity.The differences in coke combustion with O3 and O2 are due to the different form of generation of activated oxygen, the species that oxidizes the coke. O3 is activated by the γ-Al2O3 support at low temperatures firstly eliminating coke from the support while O2 is activated by Pt at temperatures higher than 450 °C and the coke removal starts on the metal. Then, the recovery of the Pt catalytic activity as a function of coke elimination is faster with O2 than with O3.  相似文献   

4.
The effect of temperature on reaction of H2S with carbon structures of a coke were studied in a fixed-bed quartz tube reactor coupled with two parallel detectors, flame photometric detector (FPD) and mass spectrum (MS). The uptake of H2S with the coke matrix was studied through a sulfur uptake/temperature programmed desorption process (SU/TPD) and a temperature programmed oxidation process (TPO). The results show that the sulfur imbibed by a demineralized coke at elevated temperatures is very stable, which can only be decomposed and released to gas phase under combustion conditions. The chemical imbibition of sulfur takes place at an elevated temperature. At relatively lower temperatures, H2S was adsorbed physically by the sample and then transformed to stable sulfur species. At higher temperatures, the chemical reactions between H2S and DM-Coke led to the formation of more stable sulfur-containing forms and consequently increased H2S uptake ability. This is essence of the temperature effect on the uptake of H2S by a de-mineralized coke. The irregular behavior with the temperature was caused by the different interactions.  相似文献   

5.
Pt, Pt–Sn and Pt–W supported on γ‐Al2O3 were prepared and characterized by H2 chemisorption, TEM, TPR, test reactions of n‐C8 reforming (500°C), cyclohexane dehydrogenation (315°C) and n‐C5 isomerization (500°C), and TPO of the used catalysts. Pt is completely reduced to Pt0, but only a small fraction of Sn and of W oxides are reduced to metal. The second element decreases the metallic properties of Pt (H2 chemisorption and dehydrogenation activity) but increases dehydrocyclization and stability. In spite of the large decrease in dehydrogenation activity of Pt in the bimetallics, the metallic function is not the controlling function of the bifunctional mechanisms of dehydrocyclization. Pt–Sn/Al2O3 is the best catalyst with the highest acid to metallic functions ratio (due to its lower metallic activity) presenting a xylenes distribution different from the other catalysts. The acid function of Pt–Sn/Al2O3 is tuned in order to increase isomerization and cyclization and to decrease cracking, as compared to Pt and Pt–W. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
This work presents a detailed study of coke deposition on a PtSn catalyst under industrial conditions. The spent catalyst was submitted to Soxhlet extraction and the “soluble coke” was characterized by means of IR, UV and GC-MS. The catalyst before and after coke extraction was characterized by means of IR, carbon content and temperature-programmed oxidation (TPO). Coke formation on the catalyst involves several processes: (i) successive dehydrogenation/cyclization of alkyl chains (polyene route); (ii) n-alkane oligomerization; (iii) Diels-Alder-type reactions. The structure of insoluble coke is quite different from that of soluble coke: the elimination of the latter one causes disappearance of the low-temperature oxidation zone (TPO). Soluble coke contains dominant proportion of aliphatic groups whereas polyaromatic structures predominate in insoluble coke.  相似文献   

7.
Accompanying the fast burning of coke on a cracking catalyst is the oxidation of the coke burning product, carbon monoxide. This carbon monoxide combustion involves a homogeneous and a catalytic reaction. The homogeneous reaction was isolated by injecting pulses of CO, CO2 and O2 into a laboratory scale reactor at controlled temperature and pressure. The coke burning and catalytic CO combustion reactions were studied by oxidizing coke deposited on a zeolitic catalyst in the same microcatalytic reactor. The role of homogeneous CO oxidation during coke combustion under these conditions was determined.  相似文献   

8.
The partial oxidation of methane was studied on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2, and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst, For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane, and its behavior was explained by a change in the reaction mechanism.  相似文献   

9.
The partial oxidation of methane was studio on Pt/Al2O3, Pt/ZrO2, Pt/CeO2 and Pt/Y2O3 catalysts. For Pt/Al2O3, Pt/ZrO2 and Pt/CeO2, temperature programmed surface reaction (TPSR) studies showed partial oxidation of methane comprehends two steps: combustion of methane followed by CO2 and steam reforming of unreacted methane, while for Pt/Y2O3 a direct mechanism was observed. Oxygen Storage Capacity (OSC) evaluated the reducibility and oxygen transfer capacity of the catalysts. Pt/CeO2 catalyst showed the highest stability on partial oxidation. The results were explained by the higher reducibility and oxygen storage/release capacity which allowed a continuous removal of carbonaceous deposits from the active sites, favoring the stability of the catalyst. For Pt/Al2O3 and Pt/ZrO2 catalysts the increase of carbon deposits around or near the metal particle inhibits the CO2 dissociation on CO2 reforming of methane. Pt/Y2O3 was active and stable for partial oxidation of methane and its behaviour was explained by a change in the reaction mechanism.  相似文献   

10.
By adding solutions containing catalyst salts to hot monolith catalysts during partial oxidation processes, the salt decomposes instantly and is deposited selectively near the front face. We have used this technique to deposit extremely small amounts of Pt on α-Al2O3 monoliths during ethane oxidation to olefins. We find that on this catalyst with H2 addition, the selectivity to ethylene rises from ∼ to over 80% at an ethane conversion of ∼60% and at complete O2 conversion. We also examine the addition of promoters including Sn, which gives improved performance compared to the Pt catalyst alone. This appears to be a general effect that could be useful in preparing catalysts with different loadings and distributions in high‐temperature processes. It can also be used for rapid and accurate diagnosis of catalysts and additives and to modify catalysts on‐line in situations where deactivation or catalyst loss occurs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The catalytic activity behavior for the selective catalytic reduction of NO by C3H6 under excess oxygen and the nature of surface species on the active sites of Pt/Al2O3 catalyst after adding a second metal (Fe, Sn, Co, Cr or W) were investigated. It has been found that an important role of second metals is on TONs of C3H6 and NO conversions and the nature of surface species produced on the catalyst surface at low temperature instead of the catalytic activity behavior towards the temperature programmed reaction. Although the introduction of each second metal distinctly disturbs the characteristic of surface species, the reaction mechanism is presumably similar. The observation of few surface species and the investigation about their reactivity indicate that few mechanisms are simultaneously proceeding at the same reaction condition.  相似文献   

12.
《中国化学工程学报》2014,22(11-12):1232-1236
Dehydrogenation of propane on Pt or PtSn catalyst over Al2O3 or SBA-15 support was investigated. The catalysts were characterized by CO-pulse chemisorption, thermogravimetry, temperature-programmed-reduction of H2, and diffuse reflectance infrared Fourier transform spectroscopy of absorbed CO. The results show that the platinum species is in oxidation state in the catalyst on Al2O3 support, so the catalyst must be reduced in H2 before dehydrogenation reaction. Addition of Sn improves the Pt dispersion, but the catalyst deactivates rapidly because of the coke formation. The interaction of Pt and Al2O3 is strong. On SBA-15 support, the platinum species is completely reduced to Pt0 in the calcination process, so the reduction is not needed. Addition of Sn improves the activity and selectivity of the catalyst. The interaction of Pt and SBA-15 is weak, so it is easy for Pt particles to sinter.  相似文献   

13.
The process of isobutane dehydrogenation in the presence or absence of carbon dioxide was carried out over VMgO x catalysts with different vanadium loading. The performed tests show that both the reaction atmosphere and physicochemical properties of the catalysts (related to vanadium content) have a great influence on the activity decrease and the carbonaceous deposit formation. Despite small ability of carbon dioxide to remove coke in the Boudouard reaction, the amounts of carbonaceous species deposited on the catalysts after the isobutane dehydrogenation under CO2 atmosphere were even twice greater in comparison to those deposited in helium stream. Moreover, the rate of coke deposition during the dehydrogenation in the inert gas flow was only slightly dependent on the reaction time, in contrast to the process in carbon dioxide atmosphere. The results show that the coke formation on VMgO x is enhanced predominantly by surface acidity of the catalysts, which grows with the vanadium content and the presence of CO2 in the feed.  相似文献   

14.
Different mono (Pt), bi (Pt–Sn, Pt–Pb, Pt–Ga) and trimetallic (Pt–Sn–Ga) catalysts based on Pt and supported on different materials (Al2O3, Al2O3–K and ZnAl2O4) were tested under severe process conditions in the propane dehydrogenation reaction (both in continuous and in pulse reactors). Results show that the Pt–Sn–Ga/ZnAl2O4 catalyst has a better and more stable performance in propane dehydrogenation (high yield to propene and low coke deposition), than the other bi‐ and trimetallic systems and a commercial catalyst. Thus, the use of an adequate support (ZnAl2O4) in combination with the addition of Ga to the Pt–Sn bimetallic system enhances the catalytic performance. © 2000 Society of Chemical Industry  相似文献   

15.
The effects of oxidation/reduction regeneration treatments, with and without 1,2-dichloropropane present as a chlorinating agent, on the structure of Pt(3%)–Sn(4.5%)/Al2O3 catalysts have been correlated with selectivities for butane/H2 reactions. Particles of Pt0 fin Cl-free catalysts were partly covered by Sn0, but retained exposed ensembles of Pt atoms which were active for isomerisation, hydrogenolysis and dehydrogenation reactions, the latter becoming dominant at high reaction temperatures. Coking reduced Pt ensemble size and, hence, also favoured high selectivities for dehydrogenation as hydrogenolysis and isomerisation sites became poisoned. In contrast, the addition of 1,2-dichloropropane in an oxychlorination step before reduction promoted 1:1 Pt0–Sn0 alloy formation after reduction, the proportion of the total Pt in alloy being enhanced by increasing 1,2-dichloropropane concentration and oxychlorination temperature. The alloy surfaces were inactive for isomerisation and hydrogenolysis reactions, giving dehydrogenation as the sole catalytic reaction.  相似文献   

16.
Infrared spectra of adsorbed CO have been used as a probe to monitor changes in Pt site character induced by the coking of Pt/Al2O3 and Pt–Sn/Al2O3 catalysts by heat treatment in heptane/hydrogen. Four distinguishable types of Pt site for the linear adsorption of CO on Pt/Al2O3 were poisoned to different extents showing the heterogeneity of the exposed Pt atoms. The lowest coordination Pt atoms (ν(CO) < 2030 cm−1) were unpoisoned whereas the highest coordination sites in large ensembles of Pt atoms (2080 cm−1) were highly poisoned, as were sites of intermediate coordination (2030–2060 cm−1). Sites in smaller two‐dimensional ensembles of Pt atoms (2060–2065 cm−1) were partially poisoned, as were sites for the adsorption of CO in a bridging configuration. The addition of Sn blocked the lowest coordination sites and destroyed large ensembles of Pt by a geometric dilution effect. The poisoning of other sites by coke was impeded by Sn, this effect being magnified for Cl‐containing catalyst. Oxidation or oxychlorination of coked catalyst at 823 K followed by reduction completely removed coke from the catalyst surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The characterization of the coke deposited on an industrial Pt–Sn/γ‐Al2O3 catalyst, used in a continuous reforming process, was performed with AFM, XRD, FTIR, EPR, NMR, TG‐DTG and DTA techniques. Composition, structure and location of the coke on the catalyst were investigated. The coke was predominantly deposited on the catalyst surface and in the interstices between the catalyst particles. Its content increased along the reactor from top to bottom. Coke was deposited in the form of uniform films and clusters of three‐dimensional disks with diameters between 0.12 and 0.18 μm. It had a pseudo‐graphite structure produced by the dehydrogenation and polymerization of the aromatic precursor compounds. The coked catalyst showed a good combustion behavior; it was regenerated below 550°C. These results are important to elucidate the coke formation mechanism, to generate new continuous reforming catalysts, and to optimize the reactor operation parameters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In this work we have studied the effect of the addition of Sn to alumina-supported Pt catalysts towards the catalytic performance in CO-PROX reaction. Monometallic Pt and Sn catalysts supported on alumina, and bimetallic Pt–Sn supported on alumina (with Pt/Sn atomic ratios of 1.92, 0.53 and 0.28) was prepared by successive impregnation, with high dispersion of the metal. The addition of Sn to Pt does not substantially increase the activity in CO-PROX at low temperatures; however, the temperature interval where the CO conversion is maximum was significantly increased. The optimum Pt/Sn atomic ratio was found to be 0.53. In a wide operation window with respect to temperature, the catalyst with optimum Pt to Sn ratio shows a maximum CO conversion of 78% for λ = 2 with constant selectivity (about 40%) and with 31%CO yield. In the presence of either CO2 or H2O the performance of Sn promoted catalyst was seen to show improved activity.  相似文献   

19.
An investigation was conducted of noble metal and metal oxide catalysts deposited on Al2O3. The noble metals Pt, Pd, Rh the metal oxides CuO, SnO2, CoO, Ag2O, In2O3, catalysts were examined. Also investigated were noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts prepared by single sol–gel method. Both were studied for their capability to reduce NO by propene under lean conditions. In order to improve the catalytic activity and the temperature window, the intermediate addition propene between a Pt/Al2O3 oxidation and metal oxide combined catalyst system was also studied. Pt/Al2O3 and In2O3/Al2O3 combined catalyst showed high NO reduction activity in a wider temperature window, and more than 60% NO conversion was observed in the temperature range of 300–550 °C.  相似文献   

20.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号