首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水蒸气活化法制备了兰炭粉基活性炭。探讨了兰炭粉基活性炭对高COD焦化废水的吸附研究。考察了活性炭粒度、分散方式、投加量、吸附时间对焦化废水中COD去除率的影响。结果表明:曝气分散方式优于搅拌;在曝气条件下,活性炭粒度100目,投加量10g/L,吸附时间1h,COD去除率达到89.79%。  相似文献   

2.
采用载铜活性炭(Cu-AC)吸附处理焦化废水,研究Cu-AC投加量、pH值及温度等因素对Cu-AC吸附焦化废水COD值降低率的影响,探讨Cu-AC对焦化废水吸附性能等温线、吸附动力学及吸附热力学特征.结果表明:在酸性及中性条件下,焦化废水COD值降低率可达到80%以上;吸附等温线符合Langmuir模型,拟二级动力学方程可较好地描述Cu-AC吸附焦化废水过程,吸附热力学参数计算结果表明Cu-AC吸附焦化废水过程为自发、吸热的物理吸附过程.  相似文献   

3.
以不同浓度的硝酸对活性炭进行改性,用BET氮吸附法和Boehm滴定法对改性前后的活性炭进行了表征,并比较了改性和未改性活性炭对模拟含铜废水的处理效果。结果表明:经过硝酸氧化改性的活性炭比表面积有所增大,含氧官能团总量明显增加,因而对水中Cu2+的去除率大为提高;在常温、自然pH、活性炭用量为5 g/L、吸附时间为180 min的条件下处理浓度为10 mg/L的模拟含铜废水,经浓度为10%的硝酸改性的活性炭对Cu2+的去除率在70%以上,经浓度为70%的硝酸改性的活性炭对Cu2+的去除率接近90%;Langmuir等温吸附模型可较好地描述硝酸改性活性炭对Cu2+的等温吸附行为。  相似文献   

4.
采用轻烧镁、粉煤灰和盐酸制备酸改性轻烧镁/粉煤灰。对酸改性轻烧镁/粉煤灰进行SEM及XRD表征。对比改性前后的轻烧镁/粉煤灰对多种染料废水的处理效果,探究酸改性轻烧镁/粉煤灰对活性红X-3B的吸附特性。结果表明:使用酸改性后的轻烧镁/粉煤灰吸附处理染料废水,振荡吸附1 h和12 h的去除率分别是改性前的3.2倍和1.7倍,吸附包括物理吸附和化学吸附;最佳吸附剂投加量为10 g/L,吸附1h去除率为91.40%。等温吸附试验表明:Langmuir等温吸附模型可较好地描述等温吸附过程,吸附为有利吸附。吸附动力学试验表明:准二级吸附动力学方程可较好地描述吸附动力学过程,吸附速率为6.559×10~(-3) g/(mg·min)。Weber-Worris颗粒内扩散方程表明:酸改性轻烧镁/粉煤灰对活性红X-3B的总吸附速率由膜扩散和内扩散共同控制。  相似文献   

5.
以经吸附处理的活性炭-涂膜活性炭为填充粒子,对复极性流化床三维电极反应器处理焦化废水进行了静态条件试验研究。主要探讨了通气量、电解时间、涂膜活性炭比、槽电压对COD去除率的影响。结果表明,通气量为1.5L/min,通电时间为60min,涂膜活性炭比为45%,槽电压为6V时,COD去除率最高,达87%。  相似文献   

6.
以柚子皮作为吸附剂,采用模拟含Cr废水进行实验,并通过脱色改性,单因素实验以及在共存离子情况下吸附处理实验,对吸附剂进行性能测试与分析;采用了吸附等温模型和吸附动力学模型以及热力学模型进一步分析其吸附机理。经过实验总结出最合适的反应条件:初始浓度为0.6 mg/L,pH为2,投加量为2 g/L,反应时间为60 min,温度为25℃,此时Cr的去除率达到99.70%。对吸附Cr~(6+)进行了吸附等温模型和吸附动力学模型拟合分析,结果表示Freundlich模型可以更好描述Cr~(6+)吸附数据。柚子皮对Cr~(6+)的吸附更适合用Ho准二级动力学模型来描述其吸附过程,温度有助于推动反应正向进行。  相似文献   

7.
研究了壳聚糖改性凹凸棒(CTS-ATP)对废水中苯酚的吸附效果,探索了该工艺的最佳条件。结果表明,当反应温度为40℃,CTSATP吸附剂的投加量为10 g/L,p H值为6时,吸附30 min后苯酚的去除率达90%以上。CTS-ATP对废水中苯酚的吸附符合Langmuir吸附等温方程。根据热力学函数关系计算出苯酚在CTS-ATP上的吸附焓变ΔH为95.13 J/mol,自由能变ΔG小于0,熵变ΔS大于0,表明CTS-ATP对苯酚的吸附是一自发的熵增吸热过程。  相似文献   

8.
采用甲醛-Fenton氧化-吸附法联用处理兰炭废水,探讨影响处理效果的各种因素,并利用FTIR、SEM对甲醛法反应滤渣及催化剂进行表征。结果表明,当反应温度为90 ℃,n_(甲醛)∶n_(挥发酚)=5∶1,反应时间为90 min时,挥发酚去除率最大为39.8%,COD_(Cr)去除率为38%,所得固相产物为酚醛树脂;当H_2O_2浓度为22.2 g/L,反应时间为90 min时,COD_(Cr)去除率最大为49.5%,挥发酚去除率为28%,催化剂可进行回收利用;当活性炭投加量为14 g/100 mL,吸附时间为24 h,挥发酚去除率为64%,COD_(Cr)去除率为46 %,活性炭对挥发酚吸附以及COD_(Cr)去除等温线符合Freundlich方程,对挥发酚的吸附过程满足准一级动力学模型,而COD_(Cr)去除过程则更好地符合准二级动力学模型。  相似文献   

9.
为了研究酸改性粉煤灰的改性效果,采用XRD、SEM、BET等检测方法对原粉煤灰和改性粉煤灰分别进行了表征,同时将酸改性粉煤灰作为非均相Fenton氧化法的催化剂对选矿废水进行处理.结果表明,酸改性粉煤灰存在一定量的纤铁矿,其玻璃体表面凹凸不平,存在很多凹槽与孔洞,比表面积约为原粉煤灰的3.5倍,有利于增强其吸附与催化性能.该酸改性粉煤灰用于选矿废水降解,COD去除率可达92%以上,循环利用4次后,对COD去除率仍达68.54%.  相似文献   

10.
活性氧化铝对废水中磷酸根离子的吸附特性研究   总被引:1,自引:0,他引:1  
通过静态吸附试验研究了活性氧化铝吸附废水中磷酸根离子的影响因素及作用机理。结果表明:对初始质量浓度为10 mg/L的磷酸根离子溶液,在活性氧化铝用量为25 g/L,pH值为4,吸附温度为298 K和吸附时间为60 min时,磷酸根离子的去除率为90.30%;活性氧化铝再生3次后,废水中磷酸根离子的去除率保持在89%左右。活性氧化铝pHpzc为4.9;当pH值为4时,磷酸根离子以H2PO4-形式存在,活性氧化铝表面带正电,有利于H2PO4-在其表面产生静电吸附。磷酸根离子在活性氧化铝表面的吸附符合二级动力学模型;等温吸附过程符合Langmuir等温吸附模型。zeta电位测试、热力学参数计算和FTIR分析表明:磷酸根离子在活性氧化铝表面的吸附为化学吸附与物理吸附共同作用。ΔG0,ΔH0,表明吸附过程为自发、吸热过程。  相似文献   

11.
采用响应面法研究了铁改性蛭石-腐殖酸复合吸附剂去除As(Ⅲ)的影响因素(吸附时间、吸附剂量、pH、腐殖酸含量在吸附剂中的占比、As(Ⅲ)初始浓度),得到了影响因素对去除率的二次多项式模型和最佳吸附条件,并对吸附行为的吸附动力学与热力学进行了探讨。结果表明,5个因素均对复合吸附剂吸附As(Ⅲ)的行为有显著影响;吸附最佳条件是:时间235min,吸附剂剂量8.48g·L~(-1),pH6.4,腐殖酸占比20%,As(Ⅲ)初始浓度11mg·L~(-1),此条件下的最大去除率为96.06%;用Langmuir、Freundlich方程拟合表明,Langmuir拟合结果最好,最大吸附量为3.94mg·g~(-1)(313K);吸附动力学研究结果表明,该吸附过程符合准二级动力学模型;对吸附过程热力学函数ΔG、ΔH、ΔS的计算表明,吸附过程是自发的吸热过程,吸附过程增加了体系的混乱度。  相似文献   

12.
改性煤矸石吸附剂研究   总被引:3,自引:3,他引:3  
李冬  王小庆 《非金属矿》2006,29(3):13-15,30
实验确定了煤矸石改性的最佳工艺条件;改性煤矸石对不同废水的COD吸附去除率显著,并高于活性炭,且其再生工艺简单,应用效果亦较好;改性煤矸石是一种前景较好的吸附剂。  相似文献   

13.
由于粉煤灰中含有大量的无定形相玻璃体,因此可用于选矿废水COD的降解。粉煤灰改性试验结果表明在酸改性法、碱改性法和盐改性法中,酸改性粉煤灰法效果最好。酸改性法的较佳工艺参数为:硫酸浓度1.0 mol/L、液固比3:1、酸化温度50℃、酸化时间90 min。在优化工艺下制备酸改性粉煤灰,用其降解选矿废水COD,试验条件为酸改性粉煤灰20 g/L、Fe2+1.5 mmol/L、H2O2 9.5 mmol/L、反应40 min,COD去除率可达90%以上,降解后废水符合排放标准。  相似文献   

14.
改性煤矸石吸附处理印染废水的试验研究   总被引:1,自引:0,他引:1  
利用改性后的煤矸石吸附处理印染废水,分别考察了改性煤矸石粒径、投加量、振荡吸附时间对印染废水处理效果的影响。试验结果表明:在原水COD为3 298.8 mg/L,色度为1 100倍,投加4 g粒度为120目的改性煤矸石与50 mL废水反应5 min时,改性煤矸石对COD和色度的吸附去除率分别达到46.2%和83.7%,出水COD和色度分别为1 774.8 mg/L、180倍。该项研究为改性煤矸石作为水处理吸附剂在印染废水预处理中的应用提供了理论依据,同时也为印染废水的处理提供一种途径。  相似文献   

15.
以褐煤作为吸附剂,研究了不同反应时间、反应温度、COD初始浓度、煤水比等条件下,褐煤对煤气化分离水COD的吸附脱除能力,并进行了吸附反应动力学和等温吸附热力学分析。研究结果表明:褐煤对COD的吸附更为符合准二级动力学模型,其吸附过程主要由液膜扩散步骤控制; Freundlich等温吸附方程更能准确地描述褐煤对COD的吸附反应机制,通过热力学分析可知,该吸附反应为物理吸附,且为自发、放热、熵减的反应;褐煤对高浓度废水COD的吸附脱除率可达90%,但此时煤用量较大(研究达到了400g/L),说明采用褐煤对未经生化处理的废水进行完全的COD脱除是不现实的,但可以较低的煤水比作为一种廉价的COD预脱除手段,降低后续生化处理的难度。  相似文献   

16.
采用硝酸对煤基粉末活性炭进行改性处理,考察不同改性条件下活性炭吸附性能的变 化,并将最优改性条件下所得的活性炭用于对垃圾渗滤液的深度处理,考察活性炭的不同投加量 和吸附时间等参数对污染物的去除效果。 试验结果表明:在硝酸浓度15%、改性温度60℃、改性 2h后,改性活性炭中孔孔径的比例最大,吸附性能最佳;在改性活性炭处理垃圾渗滤液试验中, 当活性炭投加量为4g/150mL、吸附时间为12h、溶液pH值为7时,化学需氧量(COD)、氨氮 (NH3-N)、总氮(TN)、六价铬(Cr6+)的去除率分别为79*0%、43*3%、52*6%和100%。 改性后, 活性炭对COD和TN的去除率较改性前分别提高10*1%和17*3%。 对COD吸附降解动力学分 析发现,改性活性炭12h内吸附降解COD的反应更符合零级动力学反应。 对降解过程进行非线 性拟合表明,降解过程可由Logistic函数模型模拟和预测。 利用超声波法,在pH值为4*5的酸性 条件下超声2h以上时,对改性活性炭再生后恢复效果较好,以UV254为参考值,再生后处理率相 比初次使用时仅降低12%,可重复利用。  相似文献   

17.
李晔  张猛  朱丽  马啸  胡进  郑方钊 《金属矿山》2011,40(9):160-163
通过浸渍CTMAB法制备有机改性赤泥吸附剂,并探讨改性赤泥吸附剂对磷的吸附性能。结果表明:当浸渍液CTMAB质量浓度为8 g/L、焙烧温度为500 ℃、模拟含磷废水初始浓度为5 mg/L、废水pH=3、振荡时间为60 min时,改性吸附剂对磷的去除率达到90%以上。根据试验结果建立了改性吸附剂吸附磷的Freundlich等温线模型,通过热力学分析揭示出该吸附过程可自发进行。  相似文献   

18.
焦粉对焦化废水中包括吲哚在内的有机污染物具有较好的吸附作用,为进一步提高焦粉对吲哚的去除率,以2 mol/L硝酸为改性剂对原焦粉(CP-Raw)进行改性得到硝酸改性焦粉(CP-HNO_3),分别用2种焦粉对吲哚溶液进行吸附处理,选择吸附效果较好的焦粉进行优化试验,同时对2种焦粉的物理化学性质进行表征和对比。试验结果表明,焦粉经改性后理化性质发生改变且吸附性能提高;使用CP-HNO_3在最佳试验条件下,吸附处理吲哚溶液能够得到很高的吲哚去除率。  相似文献   

19.
利用微波辐射技术和HCl对天然沸石进行改性,在单因素试验的基础上对改性条件进行了优化,得出沸石改性的较优试验条件为:HCl改性液浓度为1.5 mol/L、微波功率640W、微波辐射时间6 min。研究了改性沸石对废水中Zn2+的吸附性能、影响因素及动力学过程,结果表明:当废水p H=7.0、常温、吸附时间为75 min、改性沸石用量为10 g/L时,对质量浓度为50 mg/L的Zn2+的去除率达98.52%。Langmuir吸附模型能较好地模拟改性沸石对Zn2+的吸附过程,吸附动力学方程以准二级动力学方程的拟合效果最优。  相似文献   

20.
铀造成的水体污染是目前亟需解决的环境问题,吸附法是一种效率高且有效的方法之一。针对膨润土吸附率不佳的问题,采用硅烷偶联剂KH550对膨润土进行改性,提高膨润土对水体中低浓度铀的吸附性能。采用SEM、FTIR、XRD、氮气吸附脱附对吸附材料进行表征,并利用该材料对水体中铀进行吸附试验。结果表明,膨润土采用KH550改性后,在pH为5、温度为338.15K、初始浓度为10mg/L、转速为165r/min、投加量为1.0g/L、反应时间大于50min的条件下,含铀废水中铀去除率大于95%。改性膨润土对铀的吸附符合拟二级动力学模型和Langmuir模型,其对铀的吸附为自由度减少,熵减的过程。该试验有望为含铀废水的处理提供一种新技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号