首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A practical design method is developed for cooperative tracking control of higher-order nonlinear systems with a dynamic leader. The communication network is a weighted directed graph with a fixed topology. Each follower node is modeled by a higher-order integrator incorporating with unknown nonlinear dynamics and an unknown disturbance. The leader node is modeled as a higher-order nonautonomous nonlinear system. It acts as a command generator giving commands only to a small portion of the networked group. A robust adaptive neural network controller is designed for each follower node such that all follower nodes ultimately synchronize to the leader node with bounded residual errors. Moreover, these controllers are distributed in the sense that the controller design for each follower node only requires relative state information between itself and its neighbors. A simulation example demonstrates the effectiveness of the algorithm.  相似文献   

2.
The focus of this paper is on the design of a control architecture of decentralized type for controlling a leader/follower pair of autonomous non‐holonomic vehicles. A fundamental constraint in this trailing control requires that each agent employs local sensor information to process data on the relative position and velocity between its neighbouring vehicles, without relying on global communication with mission control. This constraint poses a challenge in the design of the control system because the reference trajectory to be tracked, which in the case considered in this paper is related to the motion of the leader, is not known a priori. It is shown in the paper that this specific control problem can be approached from the point of view of the internal model paradigm. In particular, once models of the autonomous dynamics of the leader are embedded in a decentralized dynamic controller, the design of the controller can be completed with a robust stabilizer, obtained by using ISS‐gain‐assignment techniques. It is shown that asymptotic convergence of the follower to an arbitrarily small neighbourhood of the desired steady‐state configuration is achieved, despite the presence of possibly large parameter uncertainties, while the motion of each agent remains confined into specified ‘sectors’ to avoid possible collision between neighbouring vehicles during transients. Simulation results are presented to illustrate the design methodology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper mainly solves two major problems that are unavoidable in leader–follower formation process of quadrotor UAV group: the existence of external uncertainty disturbance and communication limited between quadrotor unmanned aerial vehicle (UAV) group. To solve the problem that only one of the followers in the leader–follower formation can obtain the leader's information, an improved distributed estimator is proposed in this paper, which can accurately estimate the leader's information for each follower. In addition, in order to eliminate the influence of uncertain external disturbance on the performance of quadrotor UAV, an adaptive estimation law is designed based only on velocity and position variables. For the attitude and position subsystem of the quadrotor UAV, a sliding surface with fractional-order term is designed. Which makes the quadrotor UAV tracking error system obtain good robustness at the stage of reaching the sliding surface and fast convergence and accurate tracking performance in the sliding stage. Based on Lyapunov stability theory, the convergence results are analyzed strictly. The results show that the algorithm can make the position distance between leader and followers converge to the desired offset. Simulation results verify the effectiveness and superiority of the control algorithm.  相似文献   

4.
卫星编队飞行的鲁棒自适应控制方法   总被引:2,自引:0,他引:2  
研究了主从式框架下编队飞行的相对控制问题.首先推导了描述主从星相对运动的完整非线性动力学模型, 利用完整模型的无摄动形式提出了最优参考轨迹生成问题,并应用高斯伪谱法将此问题转换成非线性规划问题,使其可以数值求解; 基于Lyapunov 方法设计了闭环系统的鲁棒自适应控制器,在存在未知干扰、未知主星轨道参数与控制以及未知从星质量的情况下, 仅利用相对状态测量即能够保证闭环系统的参考轨迹跟踪误差和参数估计误差全局一致最终有界,并证明了跟踪误差的最终界可以 通过选取合理的控制器参数使其任意小;最后给出了具体的仿真场景验证了本文主要结果的有效性.  相似文献   

5.
This work considers the problem of distributed consensus tracking control of second-order uncertain nonlinear systems under a directed communication graph which contains a spanning tree, where the leader node is the root. It is assumed that the followers receive only the relative positions from the neighbours. For the purpose of consensus tracking controller design, in each follower, a group of K-filters is introduced so that the necessity of velocity estimating is avoided. Then we can express each follower's tracking error dynamics as a second-order system with mismatched uncertainties. And hence we can design a robust consensus tracking controller for each follower by using the combination of the backstepping design and the disturbance observer based control using only relative position information. Theoretical analysis is performed to show that the DOBs' estimation errors can be made to decay to be sufficiently small very quickly before the system states escape from the feasible region. Then we show that all the followers' states track those of the leader with arbitrarily small ultimate error bounds. And simulation examples are provided to demonstrate the performance of the proposed method.  相似文献   

6.

In this paper, we address the fixed-time consensus tracking problem of second-order leader-follower multi-agent systems with nonlinear dynamics under directed topology. The consensus tracking algorithm consists of distributed observer and observer-based decentralized controller. The fixed-time distributed observer guarantees that each follower estimates the leader’s state under directed topology within a fixed time, where the upper bound of convergence time is independent on the initial conditions. The fixed-time decentralized controller makes each follower converge to the leader’s state in fixed time via tracking the distributed observer’s state and overcome the nonlinear dynamics without adding linear control terms. Finally, the numerical example is provided to illustrate the effectiveness of the results.

  相似文献   

7.
对主从航天器的相对姿态控制问题,考虑从航天器系统不确定因素,提出了一种基于反步法的姿态控制方法,并引入自适应控制律.该方法首先根据主从航天器的相对位置信息,解算出从航天器观测轴指向主航天器以及从航天器跟踪主航天器轨道坐标系等两种任务的期望姿态;然后基于修正罗德里格参数(MI(P)描述的从航天器姿态误差动力学模型设计了姿态控制器以及针对航天器惯量的不确定性设计了自适应控制律;并基于Lyapunov方法从理论上证明了该方法能够实现全局渐近稳定的相对姿态控制.最后将该方法应用于某编队飞行任务,仿真结果表明此控制器能够实现其编队飞行控制,具有良好的控制性能.  相似文献   

8.
In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.  相似文献   

9.
This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system.  相似文献   

10.
This paper proposes a new mixed policy iteration and value iteration (PI/VI) design method for nonlinear H control based on the theories of polynomial optimization and Lasserre's hierarchy. The design of a mixed PI/VI controller can be carried out in four steps: firstly, initialize design parameters and expand nonlinear system matrices; secondly, obtain a polynomial matrix inequality for policy improvement; thirdly, obtain the Lasserre's hierarchy of a global polynomial optimization problem for value improvement; fourthly, perform the mixed PI/VI algorithm to approximate the optimal nonlinear H control law. The novelty of this work lies in that the problem of designing a nonlinear H controller is translated into a polynomial global optimization problem, which can be solved by Lasserre's hierarchy directly, and then, the mixed PI/VI algorithm is presented to approximate the optimal nonlinear H control law by updating global optimizers iteratively. The main results of this paper consist of the mixed PI/VI algorithm and the related three theorems, which guarantee robust stability and performance of the closed‐loop nonlinear system. Numerical simulations show that the mixed PI/VI algorithm converges very fast and achieves good robust stability and performance in transient behavior, disturbance rejection, and enlarging the domain of attraction of the close‐loop system.  相似文献   

11.
This paper considers the receding horizon tracking control of the unicycle‐type robot subject to coupled input constraint based on virtual structure. The tracking position of the follower is considered to be a virtual structure point with respect to a Frenet–Serret frame fixed on the leader, and the desired control input of the follower not only depend on the input of the leader but also the separation vector. Firstly, a sufficient input condition for the leader robot is given to enable the follower to track its desired position while satisfying its inputs constraint. Secondly, receding horizon control scheme is designed for the follower robot, in which the recursive feasibility is guaranteed by developing a diamond‐shaped positively invariant terminal‐state region and its corresponding controller. Finally, simulation results are provided to verify the effectiveness of the scheme proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a fuzzy based leader‐follower flocking system. To maintain the distance between robots, we use a fuzzy logic controller to design a “force function” which is related to the relative distance between neighbours. The “force function” is used to control velocity of robots. To prove stability of the flocking system, we build a Hamilton function which is kinetic energy of the flocking system. Utilizing the LaSalle's invariance principle, we prove that the system is stable. Specially, we develop a flocking controller in local form. By using the local controller, the robots in the flocking system only need to know local information (relative distances and relative angles between neighbours). To evaluate performance of the flocking system, we simulate the flocking system tracking trajectories with different shapes. The local flocking algorithm is tested with three Pioneer robots. We use the SICK laser scanner to measure the relative distances and relative angles between neighbours. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This article presents a partial state feedback controller for a rigid-link flexible-joint (RLFJ) robot using an observed integrator backstepping approach. The robot controller requires only link position and actuator position measurements, and eliminates the need for measuring link velocity and actuator velocity. The controller uses two exact knowledge, second-order nonlinear observers to estimate the link and actuator velocities. The overall control system achieves a semiglobal exponential stability result for the link position and velocity tracking errors as well as the velocity observation errors. A stability proof and simulation results for the proposed partial state feedback controller are included in the article. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
This article investigates the leader‐follower consensus problem of a class of non‐strict‐feedback nonlinear multiagent systems with asymmetric time‐varying state constraints (ATVSC) and input saturation, and an adaptive neural control scheme is developed. By introducing the distributed sliding‐mode estimator, each follower can obtain the estimation of leader's trajectory and track it directly. Then, with the help of time‐varying asymmetric barrier Lyapunov function and radial basis function neural networks, the controller is designed based on backstepping technique. Furthermore, the mean‐value theorem and Nussbaum function are utilized to address the problems of input saturation and unknown control direction. Moreover, the number of adaptive laws is equal to that of the followers, which reduces the computational complexity. It is proved that the leader‐follower consensus tracking control is achieved without violating the ATVSC, and all closed‐loop signals are semiglobally uniformly ultimately bounded. Finally, the simulation results are provided to verify the effectiveness of the control scheme.  相似文献   

15.
This paper considers the containment control problem for multi‐agent systems with general linear dynamics and multiple leaders whose control inputs are possibly nonzero and time varying. Based on the relative states of neighboring agents, a distributed static continuous controller is designed, under which the containment error is uniformly ultimately bounded and the upper bound of the containment error can be made arbitrarily small, if the subgraph associated with the followers is undirected and, for each follower, there exists at least one leader that has a directed path to that follower. It is noted that the design of the static controller requires the knowledge of the eigenvalues of the Laplacian matrix and the upper bounds of the leaders’ control inputs. In order to remove these requirements, a distributed adaptive continuous controller is further proposed, which can be designed and implemented by each follower in a fully distributed fashion. Extensions to the case where only local output information is available and to the case of multi‐agent systems with matching uncertainties are also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
周峰  吴炎烜 《自动化学报》2015,41(1):180-185
研究了leader有控制输入且followers未知该输入条件下的线性多智能 体一致性跟踪问题.提出两种一致性跟踪算法,证明两种算法在leader到followers存在一棵 有向生成树且follower间拓扑是有向条件下,网络就能跟踪leader的状态.对于第一种算法,节点根 据相邻节点或leader的状态来求解其控制输入,并基于代数Riccati不等式给出 连续情形下算法稳定性条件.第二种算法直接利用相邻节点或leader的状态,使followers在上述网络条件下跟踪leader的状态,同样基于代数Riccati不等式给出算法稳定性条件. 仿真结果验证了算法的有效性.  相似文献   

17.
ABSTRACT

This paper investigates the leader–follower formation problem of underactuated surface vessels. Velocities of both leader and follower vessels are unavailable. Model uncertainties and ocean disturbances are also considered. By incorporating adaptive control, neural networks (NNs), the high-gain observer (HGO) and the minimal learning parameter (MLP) algorithm in the backstepping procedure, a novel adaptive output-feedback formation control scheme is developed. We show that formation errors can be guaranteed to be semiglobally uniformly ultimately bounded (SGUUB) with the proposed controller. Compared with existing methods, the formation can be achieved only with position and yaw angle of both leader and follower. Meanwhile, the developed scheme can enhance the robustness of the closed-loop system with less computational effort, where only two online parameters need to be tuned. Simulation and comparison results are provided to illustrate the effectiveness of theoretical results.  相似文献   

18.
In this paper, we use computer vision as a feedback sensor in a control loop for landing an unmanned air vehicle (UAV) on a landing pad. The vision problem we address here is then a special case of the classic ego-motion estimation problem since all feature points lie on a planar surface (the landing pad). We study together the discrete and differential versions of the ego-motion estimation, in order to obtain both position and velocity of the UAV relative to the landing pad. After briefly reviewing existing algorithm for the discrete case, we present, in a unified geometric framework, a new estimation scheme for solving the differential case. We further show how the obtained algorithms enable the vision sensor to be placed in the feedback loop as a state observer for landing control. These algorithms are linear, numerically robust, and computationally inexpensive hence suitable for real-time implementation. We present a thorough performance evaluation of the motion estimation algorithms under varying levels of image measurement noise, altitudes of the camera above the landing pad, and different camera motions relative to the landing pad. A landing controller is then designed for a full dynamic model of the UAV. Using geometric nonlinear control theory, the dynamics of the UAV are decoupled into an inner system and outer system. The proposed control scheme is then based on the differential flatness of the outer system. For the overall closed-loop system, conditions are provided under which exponential stability can be guaranteed. In the closed-loop system, the controller is tightly coupled with the vision based state estimation and the only auxiliary sensor are accelerometers for measuring acceleration of the UAV. Finally, we show through simulation results that the designed vision-in-the-loop controller generates stable landing maneuvers even for large levels of image measurement noise. Experiments on a real UAV will be presented in future work.  相似文献   

19.
In this paper, an efficient framework is proposed to the consensus and formation control of distributed multi‐agent systems with second‐order dynamics and unknown time‐varying parameters, by means of an adaptive iterative learning control approach. Under the assumption that the acceleration of the leader is unknown to any follower agents, a new adaptive auxiliary control and the distributed adaptive iterative learning protocols are designed. Then, all follower agents track the leader uniformly on [0,T] for consensus problem and keep the desired distance from the leader and achieve velocity consensus uniformly on [0,T] for the formation problem, respectively. The distributed multi‐agent coordinations performance is analyzed based on the Lyapunov stability theory. Finally, simulation examples are given to illustrate the effectiveness of the proposed protocols in this paper.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a fixed-time cooperative guidance law for leader-following missiles, comprising one leader missile with the target seeker and several seeker-less follower missiles. The aim is to achieve a simultaneous attack on a maneuvering target at desired impact angles. First, a guidance law with impact angle control for the leader missile against a maneuvering target is proposed based on nonsingular fast terminal sliding mode (NFTSM) control algorithm. Then, the design of cooperative guidance law for the follower missiles is composed of two parts: along the follower-to-leader line of sight (LOS) direction, the guidance command derived from bi-homogeneous property is designed to ensure that the follower-leader ranges keep proportional consensus with the range-to-go of the leader missile, thus avoiding the estimation of time-to-go ( ); in the normal follower-to-leader LOS direction, considering the relative impact angle constraints which is determined by the leader LOS angle, the guidance command is proposed based on predefined-time sliding mode control method. What's more, a distributed fixed-time observer is designed for the follower missiles to compensate for unobtainable leader missile information. The fixed-time stability of the proposed methods is demonstrated using the Lyapunov theory and bi-homogeneous property. Finally, simulation results confirm the effectiveness and superiority of the proposed fixed-time cooperative guidance law with leader-following strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号