首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We consider the estimation problem for an unknown vector β ∈ Rp in a linear model Y = + σξ, where ξ ∈ Rn is a standard discrete white Gaussian noise and X is a known n × p matrix with np. It is assumed that p is large and X is an ill-conditioned matrix. To estimate β in this situation, we use a family of spectral regularizations of the maximum likelihood method βα(Y) = H α(X T X) β ?(Y), α ∈ R+, where β ?(Y) is the maximum likelihood estimate for β and {H α(·): R+ → [0, 1], α ∈ R+} is a given ordered family of functions indexed by a regularization parameter α. The final estimate for β is constructed as a convex combination (in α) of the estimates βα(Y) with weights chosen based on the observations Y. We present inequalities for large deviations of the norm of the prediction error of this method.  相似文献   

2.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

3.
A list decoding algorithm is designed for the first-order binary Reed-Muller codes of length n that reconstructs all codewords located within the ball of radius n/2(1 ? ?) about the received vector and has the complexity of O(n ln2(min{? ?2, n})) binary operations.  相似文献   

4.
We initiate a new line of investigation into online property-preserving data reconstruction. Consider a dataset which is assumed to satisfy various (known) structural properties; e.g., it may consist of sorted numbers, or points on a manifold, or vectors in a polyhedral cone, or codewords from an error-correcting code. Because of noise and errors, however, an (unknown) fraction of the data is deemed unsound, i.e., in violation with the expected structural properties. Can one still query into the dataset in an online fashion and be provided data that is always sound? In other words, can one design a filter which, when given a query to any item I in the dataset, returns a sound item J that, although not necessarily in the dataset, differs from I as infrequently as possible. No preprocessing should be allowed and queries should be answered online.We consider the case of a monotone function. Specifically, the dataset encodes a function f:{1,…,n}?? R that is at (unknown) distance ε from monotone, meaning that f can—and must—be modified at ε n places to become monotone.Our main result is a randomized filter that can answer any query in O(log?2 nlog? log?n) time while modifying the function f at only O(ε n) places. The amortized time over n function evaluations is O(log?n). The filter works as stated with probability arbitrarily close to 1. We provide an alternative filter with O(log?n) worst case query time and O(ε nlog?n) function modifications. For reconstructing d-dimensional monotone functions of the form f:{1,…,n} d ? ? R, we present a filter that takes (2 O(d)(log?n)4d?2log?log?n) time per query and modifies at most O(ε n d ) function values (for constant d).  相似文献   

5.
It is known that the controllable system x′ = Bx + Du, where the x is the n-dimensional vector, can be transferred from an arbitrary initial state x(0) = x 0 to an arbitrary finite state x(T) = x T by the control function u(t) in the form of the polynomial in degrees t. In this work, the minimum degree of the polynomial is revised: it is equal to 2p + 1, where the number (p ? 1) is a minimum number of matrices in the controllability matrix (Kalman criterion), whose rank is equal to n. A simpler and a more natural algorithm is obtained, which first brings to the discovery of coefficients of a certain polynomial from the system of algebraic equations with the Wronskian and then, with the aid of differentiation, to the construction of functions of state and control.  相似文献   

6.
The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code C of length n and its dual code C of minimum code distance d are proper for error detection whenever d ≥ ?n/2? + 1, and that C is proper in the interval [(n + 1 ? 2d)/(n ? d); 1/2] whenever ?n/3? + 1 ≤ d ≤ ?n/2?. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions.  相似文献   

7.
This paper forms part of an ongoing investigation to examine the quantum prediction that isolated baryons and electrons in the deep gravity wells of galaxy halos should exhibit reduced interaction cross-sections by virtue of the composition of the gravitational eigenspectra of their wave functions, and thereby identify a possible mechanism responsible for the origin of dark matter, without resorting to new physics or unknown particles. Relevant to this investigation are the electromagnetic state-to-state transition rates of charged particles occupying these gravitational eigenstates (EinsteinA coefficients), and, in the present work, we examine trends in these rates and net state lifetimes for particles in 1/r potential wells for values of the principal quantum number n and the angular momentum quantum number l. We find that transition rates decrease with increasing n and l, and that the rate is more steeply dependent on l when the quantum parameter Δp (≡ Δn ? Δl) is greater, in agreement with earlier work. It is also found that there is an empirical relationship between the total state lifetime τ and the eigenvalues n and l, which is given by τn α l β , where α ≈ 3 and β ≈ 2. The results apply equally to electrical potential wells, where the phenomena of reduced cross-sections and long radiative lifetimes is well known in the case of the Rydberg states of electrons in atoms. More importantly, in the case of gravitational eigenstates discussed here, the quantum prediction of low Einstein A (and therefore B) coefficients ofmany of the stateto-state transitions will mean that a particle whose eigenspectral composition consists of many of these weakly interacting states will be less likely to undergo scattering processes such as Compton scattering. Trends in the Einstein coefficients over the range of component eigenstates are required for calculating the net visibility and interaction rates of the generalized wave functions representing charged particles in macroscopic gravitational fields.  相似文献   

8.
We consider the minimax detection problem for a Gaussian random signal vector in white Gaussian additive noise. It is assumed that an unknown vector σ of signal vector intensities belongs to a given set ε. We investigate when it is possible to replace the set ε with a smaller set ε0 without loss of quality (and, in particular, replace it with a single point σ0).  相似文献   

9.
We study cardinalities of components of perfect codes and colorings, correlation immune functions, and bent function (sets of ones of these functions). Based on results of Kasami and Tokura, we show that for any of these combinatorial objects the component cardinality in the interval from 2 k to 2 k+1 can only take values of the form 2 k+1 ? 2 p , where p ∈ {0, ..., k} and 2 k is the minimum component cardinality for a combinatorial object with the same parameters. For bent functions, we prove existence of components of any cardinality in this spectrum. For perfect colorings with certain parameters and for correlation immune functions, we find components of some of the above-given cardinalities.  相似文献   

10.
Previously, we found the generating function of an accidental resemblance to the b parent examples at m counter examples [1]. In this paper, we restrict ourself to the case where b = 2 with equal success probabilities p in Bernoulli trials for all attributes of each counter example and a success probability р 2 for each attribute in an accidental similarity. If the number n of attributes tends to infinity, the success probability is defined as \(p = \sqrt {a/n} \), and m = bn counter examples are considered, then the probability of the occurrence of an accidental similarity avoiding these m counter examples tends to 1 ? e ?a ? ae ?a [1 ? e ?ba ]..  相似文献   

11.
This paper introduces α-systems of differential inclusions on a bounded time interval [t0, ?] and defines α-weakly invariant sets in [t0, ?] × ?n, where ?n is a phase space of the differential inclusions. We study the problems connected with bringing the motions (trajectories) of the differential inclusions from an α-system to a given compact set M ? ?n at the moment ? (the approach problems). The issues of extracting the solvability set W ? [t0, ?] × ?n in the problem of bringing the motions of an α-system to M and the issues of calculating the maximal α-weakly invariant set Wc ? [t0, ?] × ?n are also discussed. The notion of the quasi-Hamiltonian of an α-system (α-Hamiltonian) is proposed, which seems important for the problems of bringing the motions of the α-system to M.  相似文献   

12.
The Laplace matrix is a square matrix L = (? ij ) ∈ ? n×n in which all nondiagonal elements are nonpositive and all row sums are equal to zero. Each Laplace matrix corresponds to a weighted orgraph with positive arc weights. The problem of reality of Laplace matrix spectrum for orgraphs of a special type consisting of two “counter” Hamiltonian cycles in one of which one or two arcs are removed is studied. Characteristic polynomials of Laplace matrices of these orgraphs are expressed through polynomials Z n (x) that can be obtained from Chebyshev second-kind polynomials P 2n (y) by the substitution of y 2 = x. The obtained results relate to properties of the product of Chebyshev second-kind polynomials. A direct method for computing the spectrum of Laplace circuit matrix is given. The obtained results can be used for computing the number of spanning trees in orgraphs of the studied type. One of the possible practical applications of these results is the investigation of topology and development of new Internet protocols.  相似文献   

13.
We address the problem of minimizing power consumption when broadcasting a message from one node to all the other nodes in a radio network. To enable power savings for such a problem, we introduce a compelling new data streaming problem which we call the Bad Santa problem. Our results on this problem apply for any situation where: (1) a node can listen to a set of n nodes, out of which at least half are non-faulty and know the correct message; and (2) each of these n nodes sends according to some predetermined schedule which assigns each of them its own unique time slot. In this situation, we show that in order to receive the correct message with probability 1, it is necessary and sufficient for the listening node to listen to a \(\Theta(\sqrt{n})\) expected number of time slots. Moreover, if we allow for repetitions of transmissions so that each sending node sends the message O(log?? n) times (i.e. in O(log?? n) rounds each consisting of the n time slots), then listening to O(log?? n) expected number of time slots suffices. We show that this is near optimal.We describe an application of our result to the popular grid model for a radio network. Each node in the network is located on a point in a two dimensional grid, and whenever a node sends a message m, all awake nodes within L distance r receive m. In this model, up to \(t<\frac{r}{2}(2r+1)\) nodes within any 2r+1 by 2r+1 square in the grid can suffer Byzantine faults. Moreover, we assume that the nodes that suffer Byzantine faults are chosen and controlled by an adversary that knows everything except for the random bits of each non-faulty node. This type of adversary models worst-case behavior due to malicious attacks on the network; mobile nodes moving around in the network; or static nodes losing power or ceasing to function. Let n=r(2r+1). We show how to solve the broadcast problem in this model with each node sending and receiving an expected \(O(n\log^{2}{|m|}+\sqrt{n}|m|)\) bits where |m| is the number of bits in m, and, after broadcasting a fingerprint of m, each node is awake only an expected \(O(\sqrt{n})\) time slots. Moreover, for t≤(1?ε)(r/2)(2r+1), for any constant ε>0, we can achieve an even better energy savings. In particular, if we allow each node to send O(log?? n) times, we achieve reliable broadcast with each node sending O(nlog?2|m|+(log?? n)|m|) bits and receiving an expected O(nlog?2|m|+(log?? n)|m|) bits and, after broadcasting a fingerprint of m, each node is awake for only an expected O(log?? n) time slots. Our results compare favorably with previous protocols that required each node to send Θ(|m|) bits, receive Θ(n|m|) bits and be awake for Θ(n) time slots.  相似文献   

14.
The problem of determining the maximum mutual information I(X; Y) and minimum entropy H(X, Y) of a pair of discrete random variables X and Y is considered under the condition that the probability distribution of X is fixed and the error probability Pr{Y ≠ X} takes a given value ε, 0 ≤ ε ≤ 1. Precise values for these quantities are found, which in several cases allows us to obtain explicit formulas for both the maximum information and minimum entropy in terms of the probability distribution of X and the parameter ε.  相似文献   

15.
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, yk=1|x k ? y k |2?k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 ? x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2 n r ? j), j = 0,1,…, 2 n ? 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.  相似文献   

16.
We consider a game between a group of n pursuers and one evader moving with the same maximum velocity along the 1-skeleton graph of a regular polyhedron. The goal of the paper is finding, for each regular polyhedron M, a number N(M) with the following properties: if nN(M), the group of pursuers wins, while if n < N(M), the evader wins. Part I of the paper is devoted to the case of polyhedra in ?3; Part II will be devoted to the case of ? d , d ≥ 5; and Part III, to the case of ?4.  相似文献   

17.
We present methods to construct transitive partitions of the set E n of all binary vectors of length n into codes. In particular, we show that for all n = 2 k ? 1, k ≥ 3, there exist transitive partitions of E n into perfect transitive codes of length n.  相似文献   

18.
In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {u e eE} and edge-costs {c e eE}, source-sink pair s, tV, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (AB, E) and an integer k > 0. The goal is to find a node subset S ? AB of minimum size |S| such G has k pairwise edge-disjoint paths between SA and SB. We give an \(O(\sqrt {k\log k})\) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {b v : vV}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+?? n approximation scheme for it using Group Steiner Tree techniques.  相似文献   

19.
In negation-limited complexity, one considers circuits with a limited number of NOT gates, being motivated by the gap in our understanding of monotone versus general circuit complexity, and hoping to better understand the power of NOT gates. We give improved lower bounds for the size (the number of AND/OR/NOT) of negation-limited circuits computing Parity and for the size of negation-limited inverters. An inverter is a circuit with inputs x 1,…,x n and outputs ¬ x 1,…,¬ x n . We show that: (a) for n=2 r ?1, circuits computing Parity with r?1 NOT gates have size at least 6n?log?2(n+1)?O(1), and (b) for n=2 r ?1, inverters with r NOT gates have size at least 8n?log?2(n+1)?O(1). We derive our bounds above by considering the minimum size of a circuit with at most r NOT gates that computes Parity for sorted inputs x 1???x n . For an arbitrary r, we completely determine the minimum size. It is 2n?r?2 for odd n and 2n?r?1 for even n for ?log?2(n+1)??1≤rn/2, and it is ?3n/2??1 for rn/2. We also determine the minimum size of an inverter for sorted inputs with at most r NOT gates. It is 4n?3r for ?log?2(n+1)?≤rn. In particular, the negation-limited inverter for sorted inputs due to Fischer, which is a core component in all the known constructions of negation-limited inverters, is shown to have the minimum possible size. Our fairly simple lower bound proofs use gate elimination arguments in a somewhat novel way.  相似文献   

20.
Given a metric graph G=(V,E) of n vertices, i.e., a complete graph with a non-negative real edge cost function satisfying the triangle inequality, the metricity degree of G is defined as \(\beta=\max_{x,y,z\in V}\{\frac{c(x,y)}{c(x,z)+c(y,z)}\}\in[\frac{1}{2},1]\). This value is instrumental to establish the approximability of several NP-hard optimization problems definable on G, like for instance the prominent traveling salesman problem, which asks for finding a Hamiltonian cycle of G of minimum total cost. In fact, this problem can be approximated quite accurately depending on the metricity degree of G, namely by a ratio of either \(\frac{2-\beta}{3(1-\beta)}\) or \(\frac{3\beta^{2}}{3\beta^{2}-2\beta+1}\), for \(\beta<\frac{2}{3}\) or \(\beta\geq \frac{2}{3}\), respectively. Nevertheless, these approximation algorithms have O(n 3) and O(n 2.5log?1.5 n) running time, respectively, and therefore they are superlinear in the Θ(n 2) input size. Thus, since many real-world problems are modeled by graphs of huge size, their use might turn out to be unfeasible in practice, and alternative approaches requiring only O(n 2) time are sought. However, with this restriction, all the currently available approaches can only guarantee a 2-approximation ratio for the case β=1, which means a \(\frac{2\beta^{2}}{2\beta^{2}-2\beta+1}\)-approximation ratio for general β<1. In this paper, we show how to elaborate—without affecting the space and time complexity—one of these approaches, namely the classic double-MST heuristic, in order to obtain a 2β-approximate solution. This improvement is effective, since we show that the double-MST heuristic has in general a performance ratio strictly larger than 2β, and we further show that any alternative elaboration of it cannot lead to a performance ratio better than 2β?ε, for any ε>0. Our theoretical results are complemented with an extensive series of experiments, that show the practical appeal of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号