首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
本文对水平微细圆管内R290流动沸腾的流态进行了可视化研究,分析不同管径下流动沸腾换热主要流态形式及影响因素,基于理论流态图对比分析流态转变规律。实验工况:热流密度1~70 kW/m2,质量流率50~1 020 kg/(m2·s),饱和温度-10~25℃,管径1~3 mm,干度0~1。实验中共观察到8种R290微细通道内流动沸腾换热流态,其中间歇流和波状流为3 mm管的主要换热流态,弹状流和环状为1 mm管的主要换热流态;实测流态图中3 mm管的泡状流、混状流,2 mm管的泡状流,1 mm管的弹状流与D&W流态转变准则较为吻合,而2 mm管和1 mm管的离散流区域匹配性较差;管径的变化对流态有重要影响,随着管径的减小,气泡形状、流态形式、流态分布及流态转变曲线均发生变化,管径微尺度效应出现。  相似文献   

2.
微通道内流动沸腾的研究进展   总被引:2,自引:0,他引:2  
微通道内的流动沸腾在能源、电子冷却、生物医疗等高新技术领域有着广泛的应用.对微通道内流动沸腾的研究进展进行了综述,研究工质涉及到水、制冷剂、液氮等,内容包括微通道与常规通道的划分,微通道的传热特性、临界热流密度、压降特性、主要流型以及流型转变、不稳定性的主要形式及产生机理等.同时指出了微通道内流动沸腾进一步的研究工作.  相似文献   

3.
对自然工质CO2在不同沸腾压力下的光管、机械加工表面强化管(Turbo-EHP)水平单管管外电加热池沸腾进行了实验研究。从核态沸腾的角度分析了光管、强化管管外沸腾换热系数随热流密度、沸腾压力的变化规律,通过对热流密度在10~50k W/m2、蒸发压力在2~4 MPa范围内的换热数据分析拟合得出光管时CO2在该范围下的换热关联式,拟合关联式的计算值和实验值的误差在±8.73%以内。新的拟合关联式的计算值与已有关联式的预测值的偏差在±15%之内。在热流密度范围内强化管的强化倍率在1.50~1.72之间。研究结果对进一步深入研究CO2池沸腾换热及蒸发器的设计具有指导意义。  相似文献   

4.
为实现微小空间高效散热,本文以去离子水为工质,实验研究了工质流经高度和直径均为500μm的微圆柱组成的叉排微柱群通道时的饱和沸腾换热特性,并采用高速摄像机记录了通道内不同加热功率的气液两相流型,实验参数设定质量流速为341~598.3 kg/(m~2·s),热流密度为20~160 W/cm~2,蒸气干度为0~0.2。结果表明:随着热流密度增大,局部沸腾换热表面传热系数近似单调递减。在低干度区,局部沸腾换热表面传热系数随着质量流速的增加而增大,随着蒸气干度的增加而减小;受过冷沸腾气泡影响,工质进口温度越低,局部沸腾换热表面传热系数越大;随着热流密度增大,微柱群通道流动沸腾气泡流型依次为:泡状流、环状流,且泡状流区的局部沸腾换热表面传热系数明显高于环状流区。  相似文献   

5.
为了探究微通道内流动沸腾及传热现象的机理,以制冷剂R22为工质在矩形微通道内进行了流动沸腾及可视化实验。结果表明,在核态沸腾下传热系数受质量流率的影响较小,却随着热流密度的增加而快速增加;微通道的尺寸越小,传热效果越好,水力直径为0.92 mm和1.33 mm微通道内的传热系数比2 mm微通道内的传热系数分别提高约25%、12%;根据实验值与预测值的对比情况,在Oh H K等[15]和Yun R等[7]模型基础上拟合得到新的传热系数预测关联式,平均绝对误差降至8.8%;通过可视化实验发现,在临界热流密度下微通道内出现波浪式气体层的现象。  相似文献   

6.
王雨晨  方奕栋  苏林  杨文量  张昭 《制冷学报》2022,43(4):145-150+166
为研究平行通道直冷板的压降特性对换热的影响,本文对不同质量通量(118~1 300 kg/(m2 s))、入口过冷度(2.5~8 K)条件下低压制冷剂R1233zd(E)在平行通道直冷板内的摩擦压降进行了实验研究,分析了单相及两相摩擦压降以及气液相速度的变化规律。结果表明:在制冷剂单相情况下,随热流密度的增加,通道内的摩擦压降先减小后增加。当制冷剂进入两相状态后,摩擦压降随热流密度的增加而快速增长;质量通量的增加会使汽化核心的位置延后,导致摩擦压降变化趋势突变点的出现有所推迟。此外,在高热流密度下,制冷剂液相速度和气液相相对速度均有所增加;相同干度条件下,较高的质量通量使气液相相对速度增加,摩擦压降增速变快。  相似文献   

7.
孙佳  林宇豪  李蔚 《制冷学报》2023,(6):77-84+117
非均匀润湿表面对流动沸腾过程中的流动模式和传热机制有重要影响。本文以去离子水为工质,实验研究了矩形微通道内硅表面和润湿异质性表面的过冷流动沸腾换热特性。通道横截面为0.5 mm×5 mm,过冷流动沸腾的质量通量分别为300、400 kg/(m2·s),热流密度在30~300 kW/m2的范围内。实验在大气压下进行,过冷度为10 K。对比了与流动方向垂直(HC)和平行(HP)的疏水图案,讨论了不同热流密度、质量通量等工况下的硅表面和润湿异质性表面垂直向上流动沸腾,分析了不同工况下过冷沸腾的沸腾曲线、平均传热系数和两相流流型。结果表明:润湿异质性表面的流动沸腾换热表面传热系数最大提高了39.55%,换热机制主要为核态沸腾。  相似文献   

8.
为研究流体物性、流动和换热过程的状态参量对微通道内沸腾换热特性的影响规律,本文采用去离子水和无水乙醇在当量直径为0.293 mm的矩形微通道进行了不同质量流量和热流密度条件下的沸腾换热实验研究,通过对实验数据的计算和处理,分析总结了流体的热物性、质量流量、热流密度、干度和Bo数等参量对沸腾换热系数的影响规律。结果表明:沸腾换热系数随着热流密度、干度和Bo数的增大而降低,核态沸腾占主导地位;相同的质量流量和热流密度条件下,去离子水的沸腾换热系数明显高于无水乙醇的沸腾换热系数,并且前者的换热系数随质量流量的增大而增大,而后者变化不明显。根据考虑了通道尺寸效应及流体物性参量总结出的换热系数关联式进行了计算,计算结果对去离子水和无水乙醇的平均绝对误差分别为14.2%和16.6%,可认为该关联式适用于微通道内沸腾换热系数的预测。  相似文献   

9.
针对CO2在亚临界管内流动沸腾换热过程中所表现出来的干涸现象研究进展进行了综述,描述了在CO2沸腾换热过程中的干涸现象及其产生的影响因素,分析了热流密度、质量流量、饱和温度、管径等因素对干涸产生的影响及机理.提出CO2流动沸腾换热过程中临界热流密度,流态变化,干涸干度的预测以及抑制干涸提前发生的相应措施是今后研究的方向.  相似文献   

10.
以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾压降特性进行了研究,并分别采用均相模型和分相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利用Lockhart-Martinelli关系式进行的分相模型计算发现,现有C值计算公式,如Chisholm,Leeand Lee,Mishima及Quand Mudawar等,都不能用于预测该实验中低高宽比微通道的两相压降。实验发现当通道中含气率相对较高时,汽液两相间相互作用随x升高而减小,需采用一随质量流率减小而减小的C值计算式。通过实验提出了基于Mishima公式的C值计算式,用该公式得到的计算值与实验结果符合较好,平均相对误差仅为16.9%。  相似文献   

11.
王皓宇  柳建华  张良  余肖霄 《制冷学报》2020,41(3):78-82+90
本文研究了R290在内径为1 mm、2 mm和4 mm水平微细圆管内的沸腾流动换热特性,在饱和温度为15℃条件下,质量流速为50~600 kg/(m2·s)、干度为0~1、热流密度为5~20 k W/m2时,对沸腾传热系数的影响进行了分析。通过实验发现,增大质量流速对传热系数具有增强作用,质量流速对传热系数的影响在低干度区域比高干度区域小。在热流密度方面,传热系数随着热流密度的增大而增大,且在1 mm和2 mm管内观察到了临界干度对传热系数的影响,这时传热系数有断崖式下降的趋势。在管径对于传热系数的影响方面,通过对不同管径换热特性的横向对比,发现在一定工况下传热系数随着管径的减小有所上升。此外本文还对R290已有的部分关联式进行了适配性验证。  相似文献   

12.
混合物流动沸腾传热是一种非常重要的传热方式,在现代工业中有着大量应用.在总结了对单工质和混合物管内流动沸腾传热相关理论和研究成果的基础上,对相关传热预估关联式进行了介绍,指出了现有研究的不足,例如:不适用于低温流体,关联式的适用性和精度不足.为进一步的研究指明了方向.  相似文献   

13.
随着航空航天领域的发展采用沸腾换热的高效换热技术越来越受到关注,泡沫金属具有比表面积大、导热系数高的优点,可以强化流动沸腾换热的效果.本文在实验工况为孔密度10~40 PPI,干度0.1~0.9,质流密度90~180 kg/(m2·s),热流密度12.4~18.6 kW/m2的条件下,研究了表面润湿性为未改性和疏水改性...  相似文献   

14.
氨制冷剂存在可燃性和毒性,因此减少其在制冷系统中的充注量极为重要。小管径换热管通常可以提供更高的表面传热系数,这可以作为提升换热器紧凑性同时减少系统中充注量的有效方法。本文搭建了氨制冷剂管内流动沸腾换热及压降测试实验装置,测试了氨制冷剂在4 mm水平光管内的流动沸腾换热及压降,并分析了干度、质量流速及热流密度对换热及压降特性的影响。结果表明:流动沸腾换热表面传热系数随着干度的增加而增大,同时质量流速和热流密度越高,流动沸腾换热表面传热系数越大。此外,氨制冷剂在管内的两相摩擦压降也随着干度的增加而增大,在固定干度下,质量流速的升高导致压降增大。  相似文献   

15.
介绍了强化管内流动沸腾换热国内外的研究现状,分析了微肋管内流动沸腾换热的影响因素,并且给出了几个实用的微肋管内沸腾换热关联式,最后对微肋管内沸腾换热的研究方向进行了讨论.  相似文献   

16.
针对CO2作为制冷剂在微细通道内流动沸腾换热进行了实验与理论研究,采用红外成像观测与换热系数实验研究定量与定性的分析了热流密度:2~35 kW/m2,饱和温度:﹣10 ℃ ~15 ℃工况时,内径为1 mm、2 mm圆管内的换热系数。实验结果表明:热流密度的增加强化了微细通道内工质核态沸腾换热,使换热系数得到显著提高;换热系数随饱和温度非单调变化,饱和温度较高时,越接近CO2临界温度其换热系数随饱和温度升高而增加,当饱和温度在低温工况时换热系数则随其降低而增加,换热过程中发生干涸干度随饱和温度升高而单调降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号