首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing trends in fragmentation and dewatering of streams warrants research on how populations and communities respond to varying water levels and barriers to movement. Although these responses are complicated by many spatial and temporal processes, long‐term datasets might help reveal complex patterns and processes driving variability in species abundances. The objective of this study was to develop a predictive framework for fish community and population responses to varying levels of water availability across six sites in two intermittent stream networks sampled >10 years. We predicted that fishes would emigrate into intermittent reaches during wet conditions; thus, overall abundances within perennial source locations will decline. Accordingly, when intermittent reaches dry, fishes will contract to wetted habitats resulting in high abundance. Observed fish community abundances were highly variable within and among study sites, but four of six sites matched our predictions. A tagging study confirmed these results and demonstrated a substantial proportion of individuals moved away from perennial reaches and into newly wetted intermittent reaches. However, site and species‐specific relationships were variable and likely depended on the habitat, metacommunity dynamics, and life history strategies. Findings suggest that species dispersal dynamics, in addition to recruitment and mortality, should be carefully considered when interpreting species responses to varying water levels, particularly in intermittent stream networks where access to habitat can change drastically with water availability.  相似文献   

2.
Wetlands are naturally heterogeneous ecosystems with resident species adapted to patchy environments. We measured how assemblages of small fish varied among four natural patches of coastal marsh in Mismer Bay, Lake Huron, USA. We sampled patches continuously for extensive time periods to describe both spatial and temporal fish distribution patterns. Fish richness and distribution varied spatially with some species restricted to one or two patches, such as Phoxinus eos and Margariscus margarita, and others widely distributed, such as Pimephales notatus and Culaea inconstans. For ubiquitous species, patch utilization varied temporally, which was explained by variation in habitat characteristics, such as macrophyte richness and growth form diversity, emergent macrophyte stem density, water temperature and depth. Northern Great Lakes coastal marshes are not static environments, and intensive sampling illustrates the dynamic interactions between fishes and this successional marsh environment. We conclude that extended sampling protocols in patchy, temperate wetlands are preferable to short surveys for making accurate evaluations about the spatio-temporal habitat utilization of fishes.  相似文献   

3.
An established population of Cabomba caroliniana now covers extensive littoral areas in the shallow waters of Kasshabog Lake (Ontario). This is the first known naturalized population of this non-native aquatic macrophyte, commonly called fanwort, on the Canadian side of the Great Lakes basin, despite the fact that it was first reported in the 1930s. High dispersal potentials combined with the ability to adapt and grow in a range of environmental conditions have made C. caroliniana a nuisance species in Australia, Japan, and parts of the United States. However, little is known about the broader ecological implications of its introduction and establishment. Using a survey approach, we conducted a preliminary assessment of water chemistry, macrophyte, epiphytic algae, and macroinvertebrate communities found in C. caroliniana beds and compared them with native macrophyte beds in Kasshabog Lake. Light penetration was significantly reduced in the C. caroliniana beds and was the only sampled physio-chemical parameter that differed between bed types. We also found several notable differences in the structure and composition of biological communities within macrophyte beds. While native macrophytes were present in dense C. caroliniana beds, abundance was considerably low and unevenly distributed. Significantly more epiphytic algae was present on C. caroliniana plants, however community composition was comparable with epiphytic algae found on native macrophytes. The taxonomic composition of macroinvertebrates was similar between C. caroliniana and native beds, while abundance was substantially higher in C. caroliniana beds, owing to high densities of coenagrionids and chironomids. These differences suggest that C. caroliniana is changing macrophyte community composition in this lake, having an impact on epiphytic algae, and creating a new habitat for some macroinvertebrates. Further studies are required to determine the extent of these ecological impacts.  相似文献   

4.
The effect of aquatic plant removal on benthic invertebrates and their habitat was studied in two macrophyte-rich streams of the Swiss Plateau. In each stream, habitat conditions (macrophyte biomass, current velocity, water depth) and invertebrate densities were monitored in a control reach and in a reach where plants were removed by cutting. Biological samples were taken and physical parameters measured on three dates before and six dates after plant removal in both reaches. Responses to plant removal were similar in both streams; macrophyte cutting initially decreased mean plant biomass (ca. 85%) and total number of invertebrates (ca. 65%). Variation between replicates was, however, higher in one of the streams, causing fewer effects on plants and invertebrates to be statistically significant. Plant cutting affected mainly taxa that used macrophytes as habitat (e.g. Simuliidae, Chironomidae), whereas highly mobile taxa (e.g. Ephemeroptera) and taxa living on or within the bed sediments (e.g. Trichoptera, Bivalvia) were less affected. Taxa that decreased after plant removal recovered within 4–6 months, although recovery of macrophytes was quite different in both streams. Invertebrate recovery also seemed to be seasonally dependent, with cutting having a less severe impact during summer than spring. Our results suggest that macrophytes in streams should be removed only in summer, preferably leaving some plant beds to act as refugia for phytophilous invertebrates. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Water discharge regulation can affect food availability, accessibility and vulnerability and thus, the trophic habitat suitability for lotic salmonids. To analyse brown trout habitat suitability, we therefore combined the relative importance of the food availability (overall abundance of benthic and drifting invertebrates), with the potential food vulnerability (accessibility, conspicuousness and ease of handling), the latter depending on both physical habitat characteristics (flow patterns and structural complexity of habitat) and invertebrate traits (size and other biological traits). We considered the trophic patterns of trout at two spatial scales: the reach scale (unregulated reach versus regulated reach) and the macrohabitat scale (e.g. riffles and pools). Discharge regulation reduced trout abundance, biomass, and temperature‐independent growth rates. In the regulated reach, trout had a lower total prey consumption, a higher consumption of terrestrial invertebrates and a higher diet diversity than in the unregulated reach, indicating that trout were food‐limited. However, the potential availability of food supplies per individual trout was similar for the two reaches. Thus, trout prey consumption in the regulated reach should have been predominantly affected by the decrease in both the availability of large invertebrates in the drift and their vulnerability in the total food supplies. There were no macrohabitat‐specific differences in the total prey consumption and in the potential food availability within each reach. However, brown trout diets differed between the macrohabitats of each reach, in relation to differences in potential invertebrate vulnerability. Therefore, the potential vulnerability of invertebrates to predation was more relevant in the ecological evaluation of salmonid habitat suitability than the total food availability. The analysis at the macrohabitat scale provided a better understanding of the switches in brown trout diet and enabled a finer and more realistic analysis of trout feeding patterns. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Water level regulation has been proposed as a tool for maintaining or enhancing fish and wildlife resources in navigation pools and associated flood plains of the Upper Mississippi River System. Research related to the development of water level management plans is being conducted under the Long Term Resource Monitoring Program. Research strategies include investigations of cause and effect relationships, spatial and temporal patterns of resource components, and alternative problem solutions. The principal hypothesis being tested states that water level fluctuations resulting from navigation dam operation create less than optimal conditions for the reproduction and growth of target aquatic macrophyte and fish species. Representative navigation pools have been selected to describe hydrologic, engineering, and legal constraints within which fish and wildlife objectives can be established. Spatial analyses are underway to predict the magnitude and location of habitat changes that will result from controlled changes in water elevation.  相似文献   

7.
Localized hypoxia can reduce available habitat, restrict movement and limit the abundance of aquatic invertebrates. Although cultural eutrophication, coupled with the effects of climate change, is likely to increase the frequency and extent of hypoxia in aquatic ecosystems, little is known about how oxygen gradients in small reservoirs influence spatial distribution and abundance of aquatic invertebrates. The present study evaluated the effects of environmental and biological attributes on seasonal and spatial variation of macroinvertebrates and explored how hypoxic conditions influenced littoral, benthic and pelagic macroinvertebrate communities in Lake Alvin, South Dakota. Data on reservoir conditions, in conjunction with macroinvertebrate sampling from May to October 2009–2011, were applied in an information theoretic approach to evaluate factors affecting invertebrate abundance. Hypoxic conditions were present from May to September in the lacustrine zone impacting 10%–39% of the water column. Benthic invertebrates were typically absent from the lacustrine zone during periods of severe hypoxia and were most abundant in the shallow, well-oxygenated riverine zone. Littoral invertebrates were negatively related to the per cent of the hypoxic water column, suggesting fish, confined to shallow waters by hypoxia, may be consuming a larger portion of littoral invertebrates in their diets. Cladocera and Copepoda densities were influenced primarily by water depth and monthly precipitation. The larger size of Daphnia found in the hypoxic-prone transitional and lacustrine zones suggested low oxygen concentrations may provide a refuge from fish predation. The results of the present study demonstrated spatial variations in near-bottom oxygen concentrations were important predictors of macroinvertebrate and zooplankton abundance and size structure in Lake Alvin and that macroinvertebrates, particularly benthic and littoral invertebrates, could benefit from measures taken to reduce summer hypoxia.  相似文献   

8.
Spatial and temporal zooplankton variations were studied for 1 year in tropical alkaline–saline Lake Nakuru to determine how they partition in the habitat, relative to environmental variables. Monthly samples were collected at 10 sampling sites, with subsurface tows, using 33.5‐μm mesh plankton nets. Physicochemical parameters displayed clear seasonal variations associated with precipitation patterns. Nine species, belonging to two main zooplankton taxonomic groups (ciliates; rotifers), were identified in the samples. Brachionus dimidiatus dominated the samples, accounting for 80% of the total zooplankton abundance. Kruskall–Wallis tests indicated significant (P < 0.05) temporal and spatial variations among all taxonomic groups. Different zooplankton species displayed a clear succession throughout the year. The total abundance of the rotifers and ciliates peaked at sampling sites near inlets during the long rainy seasons, while those in the inshore sites displayed variable succession patterns. Spatiotemporal structure of the zooplankton assemblages, and its correlation with environmental variables, indicated each species displayed distinct niche‐based partitioning. The ciliates niche was associated with increasing soluble reactive phosphorus, total phosphorus and nitrite–nitrogen (NO2–N) concentrations. Niche partitioning in rotifers was associated with nitrate–nitrogen (NO3–N), conductivity and pH. These results indicate physical niche separation, even in a small, relatively homogenous lake among species of rotifers and ciliates, providing information from which future changes in their abundance and spatial distributions can be predicted, given continuous water quality changes.  相似文献   

9.
Stable flow and thermal regimes, coupled with geologically derived nutrients, are drivers of enhanced productivity in volcanic spring‐fed rivers. However, little information exists on biotic mechanisms or species interactions contributing to elevated productivity at higher trophic levels. In a California stream, juvenile steelhead trout were observed to preferentially select macrophyte habitat at a rate three times greater, on average, than five other habitat types. To understand the potential rearing benefits associated with macrophytes, we conducted a manipulative experiment to determine how macrophytes affect invertebrate prey availability and stream water velocity. Macrophytes supported up to nine times greater abundance of invertebrates than adjacent open gravel habitats. They also doubled invertebrate drift rates and reduced water velocity by up to 42‐fold. The results show that aquatic macrophytes are an important stream habitat feature that may be bioenergetically more favourable for rearing salmonids than more traditional lotic habitats. We suggest that macrophytes have the potential to enhance growth rates of juvenile salmonids when compared with other habitat types. Habitats that confer growth and size advantages may ultimately improve fitness and contribute to conservation of imperilled salmonids.  相似文献   

10.
The Cladophora growth model (CGM) was used to estimate the importance of light, temperature, phosphorus, and self-shading on the spatial and temporal variability of Cladophora growth rates and biomass accrual in eastern Lake Erie during 2002. The CGM predicted that Cladophora growth was highly sensitive to spatial and temporal variations in soluble phosphorous concentration (SRP). Specifically the CGM predicted that: 1) Site-to-site differences in SRP concentration resulted in a 2× difference in depth-integrated biomass; 2) maximum growth rates were strongly influenced by SRP concentrations during periods of rapid biomass accrual (mid-June to mid-July); 3) inter-annual differences in SRP concentration during the spring period (∼ 1 μg/L) could result in up to a 3.5× difference in depth integrated biomass; 4) Spatial variations in water clarity could result in a 2× difference in depth-integrated biomass between sites, with variations betweens sites occurring primarily between 2–6 m depth; 5) the mid-summer sloughing phenomenon likely resulted from self-shading by the algal canopy; and 6) the seasonal growth pattern of Cladophora was strongly regulated by temperature.  相似文献   

11.
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The shallow-sloping coastal bathymetry of Saginaw Bay (Lake Huron) supports broad fringing wetlands. Because benthic invertebrates form an important forage base for fish, wading birds, and waterfowl that utilize these habitats, understanding the drivers of invertebrate community structure has significant management implications. We used Great Lakes basin-wide data from 2002 to place Saginaw Bay wetland invertebrate communities and their environmental drivers into a basin-wide context. Various aspects of community structure were highly correlated with fetch and watershed agriculture across the basin. Saginaw Bay wetlands had relatively high fetch and watershed agriculture and supported unique invertebrate communities, typified by high abundances of many insect taxa. Wetlands from other regions around the basin tended to have more crustaceans and gastropods than the Saginaw Bay wetlands. A 1997–2012 time series from three representative Saginaw Bay wetlands revealed substantial shifts in community structure throughout the period, especially from 2001 through 2004. These years followed a 1-m decline in Lake Huron water levels that occurred between 1997 and 2000. Major community changes included decreasing insect abundance, especially chironomids, and increasing crustacean abundances, especially Hyalella azteca (Amphipoda). While factors in addition to water levels were likely also important, our time series analysis reveals the marked temporal dynamics of Saginaw Bay wetland invertebrate communities and suggests that water level decline may have influenced these communities substantially. Both the spatial and temporal community patterns that we found should be considered in future bio-assessments utilizing wetland invertebrates.  相似文献   

13.
The Cladocera assemblages in two cascade reservoirs located in the Paranapanema River in Brazil were studied during two consecutive years. Upstream Chavantes Reservoir is an accumulation system, with a long water retention time, high depth and oligo‐mesotrophic status. The downstream Salto Grande Reservoir is a small, run‐of‐river reservoir, with a short water retention time, shallow depth and meso‐eutrophic status. The goal of this study was to determine the inter‐ and intra‐reservoir limnological differences with emphasis on the Cladocerans assemblages. The following questions were posed: (i) what are the seasonal dynamics of the reservoir spatial structures; (ii) how dynamics, seasonally, is the reservoirs spatial structure; and (iii) are the reservoir independent systems? A total of 43 Cladoceran species were identified in this study. Ceriodaphnia silvestrii was the most abundant and frequent species found in Chavantes Reservoir, while C. cornuta was most abundant and frequent in Salto Grande Reservoir. The Cladoceran species richness differed significantly among sampling sites for both reservoirs. In terms of abundance, there was a significant variation among sampling sites and periods for both reservoirs. A cluster analysis indicated a higher similarity among the deeper compartments, and the intermediate river‐reservoir zones was grouped with the riverine sampling sites. For the smaller Salto Grande Reservoir, the entrance of a middle size tributary causes major changes in the system. A distinct environment was observed in the river mouth zone of another small tributary, representing a shallow environment with aquatic macrophyte stands. A canonical correlation analysis between environmental variables and Cladoceran abundance explained 75% of the data variability, and a complementary factorial analysis explained 65% of the variability. The spatial compartmentalization of the reservoirs, as well as the particular characteristics of the two study reservoirs, directly influenced the structure of the Cladoceran assemblages. The conditions of the lacustrine (dam) zone of the larger Chavantes Reservoir were reflected in the upstream zone of the smaller downstream Salto Grande Reservoir, highlighting the importance of plankton exportation in reservoir cascade systems. The comparative spatial–temporal analysis indicated conspicuous differences between the two reservoirs, reinforcing the necessity of considering tropical/subtropical reservoirs as complex, multi‐compartmental water systems.  相似文献   

14.
Deviation from a river's natural flow regime is considered to be one of the most serious and continuing threats to lotic ecosystems. Peaking hydroelectric facilities, which are designed to adjust the level of power generation in accordance with hourly energy demand, can dramatically alter flows and temperatures and ultimately lead to changes in the quantity and quality of habitat available to fish. In this study, we examine the spatial distribution of river fishes, benthic invertebrates and organic matter along lateral and longitudinal gradients in two hydropeaking and eight natural Lake Superior tributaries in Ontario, Canada. This study demonstrates that (i) hourly variation in flow, caused by hydropeaking, results in a varial zone that supports significantly fewer fish than the adjacent permanently wetted channel and (ii) strong longitudinal gradients in fish biomass, particularly for sedentary species such as slimy sculpin (Cottus cognatus), exist in regulated rivers, and fish biomass is up to four times greater at sites directly below the peaking dams than at sites further downstream or in nearby natural rivers. Gradients in the spatial distribution of fishes closely follow changes in food resources such as benthic organic matter and invertebrates, suggesting that these gradients are driven by spatial shifts in food availability and are ultimately caused by gradients in abiotic habitat variables. Monitoring and assessment efforts should take into account that lateral and longitudinal gradients exist in regulated rivers, and this understanding must be incorporated into sampling programmes. Failing to do so could alter the interpretation of river productivity, integrity and health. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Lake Erie walleye Sander vitreus exhibits significant interannual variability in year-class strength. Recent research revealed the importance of larval growth and survival rates in determining walleye year-class strength in western Lake Erie, indicating that spatial and temporal overlap of larvae with good habitat conditions (e.g., abundant prey, warm waters) promoted walleye growth and survival. To assess the spatial overlap between walleye larvae and habitat parameters (water depth, temperature, water clarity, prey density) in western Lake Erie, we evaluated the spatial distribution of walleye larvae and these habitat parameters with intensive sampling at 30 to 36 sites during spring 1994–1999. We analyzed spatial relationships among pelagic walleye larvae and various habitat attributes using a geographic information system and principal components analysis. Larval walleye density was consistently highest at nearshore sites during all years and showed a high degree of spatial overlap with high ichthyoplankton density, and warm water temperatures. Larval walleye density was negatively associated with water depth and water clarity. Two principal components represented 79.6% of the total variability in site attributes. Principle components analysis supported our spatial analysis by graphically separating sites into distinct groups based on larval walleye density and habitat attributes. These analyses indicated that similar relationships between larval distribution and habitat attributes occur each year, emphasizing the importance of nearshore coastal zones as nursery areas for walleye.  相似文献   

16.
Gravel augmentation is used in sediment‐starved streams to improve salmonid spawning habitat. As gravel is added to river channels, water surface elevations may rise in adjacent areas, activating floodplain habitat at lower flows, and floodplains inundate more frequently, potentially affecting the quantity and quality of juvenile salmonid rearing habitat. We analysed 5 years of juvenile Chinook salmon Oncorhynchus tschawytscha and steelhead Oncorhynchus mykiss data from snorkel surveys before and after gravel augmentation in the Lower American River, a low‐gradient, highly regulated alluvial river in California's Central Valley. We measured the quality and quantity of rearing habitat (current velocity and areal extent of inundated riparian vegetation) following gravel placement and tested whether these factors affected juvenile abundance. Gravel augmentation increased floodplain extent by 3.7–19.8%, decreased average flow velocity from 1.6 to 0.3 m s?1 and increased the amount of vegetative cover from 0.3% to 22.6%. Juvenile abundances increased significantly for both species following augmentation. However, the strength of the relationship between abundance and habitat variables was greater for smaller salmonids. These results suggest that, in addition to enhancing salmonid spawning habitat, gravel augmentation can improve rearing habitat where channel incision and/or regulated hydrographs disconnect floodplains from main river channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Deepwater sculpin Myoxocephalus thompsonii are an important component of Great Lake's offshore benthic food webs. Recent declines in deepwater sculpin abundance and changes in bathymetric distribution may be associated with changes in the deepwater food web of Lake Huron, particularly, decreased abundance of benthic invertebrates such as Diporeia. To assess how deepwater sculpins have responded to recent changes, we examined a fifteen-year time series of spatial and temporal patterns in abundance as well as the diets of fish collected in bottom trawls during fall of 2003, 2004, and 2005. During 1992–2007, deepwater sculpin abundance declined on a lake-wide scale but the decline in abundance at shallower depths and in the southern portion of Lake Huron was more pronounced. Of the 534 fish examined for diet analysis, 97% had food in the stomach. Mysis, Diporeia, and Chironomidae were consumed frequently, while sphaerid clams, ostracods, fish eggs, and small fish were found in only low numbers. We found an inverse relationship between prevalence of Mysis and Diporeia in diets that reflected geographic and temporal trends in abundance of these invertebrates in Lake Huron. Because deepwater sculpins are an important trophic link in offshore benthic food webs, declines in population abundance and changes in distribution may cascade throughout the food web and impede fish community restoration goals.  相似文献   

18.
Coastal wetlands in the Laurentian Great Lakes are critical habitats for supporting fish diversity and abundance within the basin. Insight into the coupling of biodiversity patterns with habitat conditions may elucidate mechanisms shaping diverse communities. Within coastal wetlands, water depth as well as fluctuations in lake-wide water levels over inter-annual timescales, both have the potential to influence fish communities. Water level fluctuation can influence fish habitat structure (e.g., vegetation) in Great Lakes coastal wetlands, but it is unclear how water depth and lake-wide water level fluctuations affect fish community composition and diversity. Using β dissimilarity indices and multivariate ordination techniques, we assessed fish community structure among bulrush (Schoenoplectus acutus)-dominated wetlands in Saginaw Bay, Lake Huron, USA. We examined whether community structure was related to wetland water depth at the time of sampling and whether fish communities were more similar among years with similar Lake Huron water levels. Results suggested relatively high levels of both spatial (among wetlands) and temporal (among year) community dissimilarity that was driven primarily by species turnover. Thus, variability in water depths among wetlands and in Lake Huron water levels among years likely both contribute to regional fish diversity. Further, fish abundance and alpha diversity were positively correlated with wetland water depth at the time of sampling. Both climate change and anthropogenic water level stabilization may alter the magnitude and timing of water level fluctuations in the Great Lakes. Our data suggest that these changes could affect local fish community composition and regional fish diversity.  相似文献   

19.
The Western Route of the South-to-North Water Transfer Project will divert water from the upper Yangtze River and its tributaries,the Dadu River and Yalong River,to the upper Yellow River.The project may ease the water shortage in the Yellow River Basin.However,it may also have some effects on the ecosystem in the upper Yangtze River Basin.Benthic invertebrates play an important role in the river ecosystem,particularly in the circulation of materials and nutrition.Benthic invertebrates are widely used to quickly assess river ecosystems because of their rapid response to changes in the water environment.The diversity of benthic invertebrates is closely associated with the aquatic habitat area.This study examined this interaction by sampling the benthic invertebrates in an expanding area.The conclusions are that the diversity of benthic invertebrates begins to decrease when the aquatic habitat area is reduced to 45% of the original area,and decreases dramatically when the aquatic habitat area is reduced to 10% of the original area.The aquatic habitat area should be kept at more than 45% of the original area in order to maintain the significant diversity of benthic invertebrates.  相似文献   

20.
As anthropogenic impacts on riverine ecosystems expand, both aquatic and terrestrial ecosystems are influenced over large spatiotemporal scales. We predicted how riparian bird communities changed in response to long‐term changes in floodplain landscapes such as woodland expansion (i.e. rapid increases in vegetation cover on gravel bars and the progress of vegetation succession due to a decrease in the frequency and magnitude of flood disturbance). To test the hypothesis that woodland expansion after dam construction reduces the abundance of gravel bar‐nesting birds and increases the abundance of forest‐nesting birds, we estimated historical changes between past and present bird abundances using species distribution models across multiple rivers that were either unregulated or regulated by dams. We created past and present vegetation maps from remote sensing images and used habitat quantities as explanatory variables in the species distribution models. As we hypothesized, the estimated abundance of gravel bar‐nesting birds decreased and that of forest‐nesting birds increased because of woodland expansion in some regulated rivers. This suggests that anthropogenic alterations of riverine conditions (e.g. dam construction) can affect terrestrial ecosystems (e.g. riparian bird communities) through changes in floodplains (e.g. woodland expansion). In addition, our findings highlight the efficacy of combining spatial and temporal analyses when examining long‐term ecological dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号