首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we have synthesized tri-substituted strontium hexaferrites SrFe (12?2x)Cu x/2Co x/2Zr x O 19 (x= 0.0 ?1.0, Δx= 0.2) by sol-gel auto-combustion route. The effect of this triple doping has been studied on the structural, dielectric, and magnetic properties of M-type strontium hexaferrite nanoparticles. The characterization of these materials has been done by XRD, FT-IR, VSM, SEM, EDS, and impedance analyzer. Single-phase formation is confirmed at 800 °C. Real permittivity decreases while loss tangent increases with increase in substitution. The observed results propose these prepared ferrites for applications in filters, antennas, isolator, circulators, etc.  相似文献   

2.
The structure of a-C and CN x coatings 1–3 μ thick deposited on metal substrates by arc-pulse sputtering of graphite target in nitrogen background at P = (10?2 ?5) Pa was studied by transmission electron microscopy and scanning electron microscopy. Concentration and depth distribution of nitrogen in CN x depend on progressive saturation of graphite target. Nitrogen-free coatings (x = 0) consist of amorphous matrix with multiwalled nanotubes. Structure of carbon nitride coatings depends on nitrogen concentration. Over the range of CN/CC < 0.15 and CN/CC > 0.4 CN x coatings are amorphous. The structure of CN0.15<x<0.4 is a mixture of two types of amorphous domains, one of which is decorated by microcrystalline inclusions. The same structured inclusions were found on graphite target modified by electric arc. The obtained results allow understanding the dependence of the CN0≤x≤0.5 coatings properties on nitrogen concentration.  相似文献   

3.
Sr1?x La x Fe12O19 (x = 0, 0.15, 0.25, 0.5) hexaferrites were prepared by microwave-assisted sol-gel method. The thermal decomposition process, structural, and magnetic properties of the products were studied by thermal differential scanning calorimeter (DSC), thermogravimetry (TG), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The phase of α-Fe2O3 appeared at x = 0.25 and x = 0.5. The coercivity of La3+-substituted strontium hexaferrites is improved to 5960.2 Oe at x = 0.25.  相似文献   

4.
The substitution of strontium for lead in the material (La1.5Pb0.5?xSr x )CuO z , x = 0–0.15 has been carried out. A stable and reproducible single phased superconducting materials can be obtained inside an evacuated quartz tube. The X-ray diffraction pattern shows that the superconducting phase can be indexed on the basis of an orthorhombic symmetry (Fmmm) for x = 0 and on the basis of tetragonal symmetry (I4/mmm) for x > 0. The transition temperature T c increases as the strontium substitution parameter x increases. We observed the maximal T c around x = 0.15 with 38 K with fairly large Meissner volume fraction of 38% (FC).  相似文献   

5.
Micron-sized composition-controlled Fe100?x Co x (20 < x < 75) alloy particles with high purity have been prepared by an optimized reduction reaction. The influence of Co content on the alloying process, structures, and magnetic properties of the products has been studied. The as-synthesized Fe100 ?x Co x with x < 65 exhibit a single bcc crystal structure. A bcc-FeCo/fcc-Co composite structure can be formed in the Fe100?x Co x products with x > 65. Very slight surface oxidation is observed in all the products. The high purity and single bcc-FeCo phase for the well-alloyed Fe100 ?x Co x particles with x < 65 lead to their high saturation magnetization of 182–220 A m2 kg?1. All the well-alloyed Fe100 ?x Co x show nearly spherical morphologies with an average particle size of 2–8 μm, which results in their good compactibility with a high compacted density of about 7.4–7.6 g cm?3. The simple preparation and improved performances for these chemically synthesized composition-controlled FeCo particles show their great potential for applications in near-net-shaped and complex-shaped FeCo-based soft magnetic composite devices.  相似文献   

6.
We have studied the growth and structure of epitaxial films of Cd1–xMnx (x = 0.03) diluted magnetic solid solutions grown on mica substrates by molecular beam epitaxy and identified conditions for producing n- and p-type epitaxial films. Using an additional Te vapor source and optimizing the substrate temperature in the growth process, we were able to obtain structurally perfect p-type Cd1–xMnxTe (x = 0.03) films with clean, smooth surfaces. The growth plane of the films on the mica substrates is (111) of a face-centered cubic lattice and their unit-cell parameter is а = 6.477 Å.  相似文献   

7.
In this study, we use the first-principle calculations of density functional theory with gradient generalized approximation of Wu–Cohen to investigate the doping effect of vanadium impurity on structural, electronic and magnetic properties of In1?x V x P and B1?x V x P alloys at various concentrations x = 0.0625, 0.125 and 0.25. Owing to the metallic nature of majority spin and semiconducting minority spin, the In1?x V x P compounds exhibit a half-metallic character with total magnetic moments of 2 μ B, while the B1?x V x P has metallic nature for all concentrations. The results of exchange parameters revealed that exchange coupling between vanadium atoms and the conduction band is ferromagnetic, confirming the magnetic feature of In1?x V x P and B1?x V x P. From our findings, we have predicted that the In1?x V x P alloys seem to be potential materials for spintronics.  相似文献   

8.
Substituted barium hexaferrite nanoparticles with composition of BaFe12?x (MnMgTiZr) x/4 O 19 (x = 0–2.5 in a step of x = 0.5) were synthesized by co-precipitation method. The structural, magnetic, and microwave absorption properties of samples were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), and vector network analysis (VNA). The XRD results show that the magnetoplumbite structures for all samples have been formed. The crystallite size of nanoparticles lies in the range of 26–31 nm. FE-SEM graphs indicated that the particle sizes were almost less than 100 nm and increased with an increase in Mn–Mg–Ti–Zr substitution. The result of hysteresis loops revealed that for x>1, M s decreased with an increase in x content; furthermore, it was found that as the amount of dopant increased from x = 0 to x = 2.5, H c decreased from 4.8 to 0.81 kOe. Based on microwave measurement on reflectivity, doped samples had much more effective reflection loss values than undoped ferrites. It was also found that the maximum reflection loss (?30.1 dB) was achieved by ferrite with the maximum amount of substitution. The obtained results reflected that the proposed composites can be introduced as electromagnetic wave absorption materials.  相似文献   

9.
The structure, morphology, and magnetic properties of the mechanically alloyed iron manganese phosphides (Fe1?x Mn x )2P with 0.15 ≤ x ≤ 0.75 (Mn/Fe ratio = 0.17, 0.33, 0.66, and 3) have been studied by means of X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and BS1 and BS2 magnetometry. The powder form (Fe1?x Mn x )2P compounds exhibit multiphase structures that contain Fe(Mn)-type solid solution and Fe2P-type, Mn2P-type, Fe3P-type, and MnP/FeP-type phosphides. The magnetization versus temperature reveals the existence of multiple magnetic phase transitions. The saturation magnetization, coercivity, and squarness M r/M s ratio values are discussed as a function of both the Mn content and the temperature. From the approach to saturation magnetization studies, several fundamental magnetic parameters were extracted. The local magnetic anisotropy constant K 1 was determined.  相似文献   

10.
The composition region and structure of La1?x Sr x Co1?y Fe y O3?δ solid solutions are determined by x-ray powder diffraction using the Rietveld profile analysis method. The solid solutions based on lanthanum cobaltite, LaCoO3?δ, have a rhombohedrally distorted perovskite-like structure (sp. gr. R \(\bar 3\) c), and those based on lanthanum ferrite, LaFeO3?δ, have an orthorhombically distorted structure (sp. gr. Pbnm). The rhombohedral distortion decreases with increasing strontium content, and the solid solutions with x ≥ 0.5 have an ideal cubic structure (sp. gr. Pm3m). The composition dependences of lattice parameters for the La1?x Sr x Co1?y Fe y O3?δ solid solutions are presented, and the 1100°C isotherm of the LaCoO3?δ-SrCoO2.5±δ-SrFeO3?δ-LaFeO3?δ system in air is constructed.  相似文献   

11.
The Co1?x Zn x (x=0.4?0.5) nanorods were synthesized via an AC electrochemical deposition method into anodized aluminum oxide (AAO) templates at different voltages ranging from 10 to 18 V, and nanorods of varying concentrations of Co and Zn were obtained. The characterization tools were used to examine different aspects of nanorods, e.g., shape, size, morphology, chemical composition, and magnetic behavior. Scanning electron microscope (SEM) images show that CoZn nanorods have length L=1μm and diameter d=50 nm. The grain size was calculated to be 25.4 nm using an X-ray diffraction (XRD) technique. The XRD also shows some other phases of ZnCoO. The M?H loops measured by a vibrating sample magnetometer (VSM) at room temperature show pure ferromagnetic behavior at all AC potentials. The nanorods show magnetic isotropic behavior due to strong magnetic interactions and presence of random nanorods. The potential-dependent coercivity H c and saturation magnetization M s show a non-linear curve which is explained on the basis of magnetic islands and domain wall pinning. This study is useful to tune the magnetic properties of nanorods by a simple and low-cost technique.  相似文献   

12.
Crystal structure and magnetic properties of the Co2Mn1?x V x Sb (0 ≤ x ≤ 1) Heusler compounds have been studied by X-ray powder diffraction (XRD), magnetometric measurements, and full-potential linearized augmented plane wave (FP–LAPW) method. All compounds crystallize in a cubic Cu2MnAl-type crystal structure with the space group Fm–3m. The samples for x<0.8 have the Curie temperatures above room temperature, while the Curie temperature is observed at 68 K for the sample with x = 0.8. The saturation magnetization at 5 K decreases linearly with increasing vanadium concentration x. The values of the saturation magnetization obtained by FP–LAPW–local density approximation (LDA) calculations are in better agreement with the experimental results compared with the results obtained by FP–LAPW–generalized gradient approximation (GGA) calculations.  相似文献   

13.
Polycrystalline samples of BaTi1?xFexO3 (x = 0.00–0.30) are prepared by solid-state reaction method and their structural and magnetic properties are studied. Detailed investigation of XRD patterns reveal the coexistence of tetragonal (space group P4mm) and hexagonal phases (space group P6 3/mmc) for x ≥ 0.1. Magnetic measurements reveal room-temperature ferromagnetism in x = 0.15–0.3 samples, and their ferromagnetic transition temperature increases from 397 K for x = 0.15 to 464 K for x = 0.3. The initial magnetization curves for x = 0.15–0.3 are analyzed in terms of bound magnetic polaron (BMP) model. The analysis of susceptibility data in the paramagnetic region by Curie-Weiss law confirms the ferromagnetic transition for x ≥ 0.15 and the effective magnetic moment systematically increases with increase in Fe concentration.  相似文献   

14.
Cr x Ge1? x (x ~ 0.08) films were grown on GaAs (001) and Ge (001) substrates using molecular beam epitaxy (MBE) method, and their magnetic and transport properties have been studied in the temperature range between 1.8 and 300 K. All of the films exhibited weak paramagnetic behavior. Transport measurements showed that magnetoresistance ratio and the anomalous Hall resistance depend on the Cr concentration x and the kinds of substrate.  相似文献   

15.
The hexaferrite BaFe12 O 19 phase was synthesized through the mechanical alloying process followed by subsequent annealing. Rietveld refinements of as-milled powder annealed at 700 °C confirm the formation of the BaFe12 O 19 phase with the presence of an important amount of the α-Fe2 O 3 phase. Thus, prior mechanical milling shows much lower reaction temperature and less reaction time compared to conventional methods. Further annealing up to 900 and 1100 °C could not enable the formation of a single BaFe12 O 19 phase, reaching an optimum phase composition ratio close to BaFe12 O 19/ α-Fe2 O 3 70/30. The crystallite size was found to be in the nanoscale level but increases with increasing temperature (BaFe12 O 19 = 20–62 nm; α-Fe2 O 3 = 31–74 nm). SEM micrographs show that as the annealing temperature rises, the particles become more regular with sharp edges and hexagonal-like shapes. Magnetic measurements reveal that both M s and M r increase with annealing temperature to reach maximum values at 900 °C then remain unchanged, associated with phase composition. The coercivity H c increases upon annealing up to 700 °C to a much higher value, from 1.7 kOe for as-milled powder to 4.8 kOe. Its value then decreases, attributed to grain (particle) growth (formation of larger particles) due to high annealing temperatures: 900–1100 °C. The obtained composites show very interesting magnetic properties and can be considered for potential applications, such as hyperthermia, heavy metal and dye removal, and hard/soft magnetic composites.  相似文献   

16.
Li-Ni ferrite with chemical formula Li0.5?0.5x Ni x Fe2.5?0.5x O4 was prepared by hydrothermal method with different Ni contents (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) using metal chlorides, ferrous sulfate and sodium hydroxide as oxidants. The hydrothermal treatment was accomplished at (155 ° C) for (3 h). The required analyses of XRD, FTIR, SEM, TEM, EDX and magnetic hysteresis loop were performed to characterize the complete behavior as a function of x. It was found that lattice constant has a small increase as x increased. Crystallite size had a minimum value of about 13 nm at x = 1.0 and maximum value of about 33 nm at x = 0.3. It was also found that XRD density increased as x was increased. The particle size distributions showed that the maximum value is around 22 nm. FTIR analysis showed the presence of two main peaks with some shifting. Nanospheres were the predominant particles beside the presence of low nanorod concentration. M-H loops had super paramagnetic shape. The coercivity had a minimum value at x = 0.5. The magnetic saturation had a maximum value at x = 0.3, and the initial susceptibility χ i had a maximum value at x = 0.5.  相似文献   

17.
Barium hexaferrite is a well-known hard magnetic material. Doping using nonmagnetic cation such as Zn2+ were found to enhance magnetization owing to preferential tetrahedral site (4 f 1) occupancy of the zinc. However, the distribution of cations in hexaferrites depends on many factors such as the method of preparation, nature of the cation, and chemical composition. Here, Zn-doped barium hexaferrites (Ba1?xZnxFe12O19) were synthesized by sol-gel method. In this study, we summarized the magnetic properties of Ba1?xZnxFe12O19 (x = 0, 0.1, 0.2, 0.3) BaM, investigated by Mössbauer spectroscopy. Moreover, cation distribution was also calculated for all the products. Mössbauer parameters were determined from 57Fe Mössbauer spectroscopy and according to it, the replacement of Ba-Zn affects all parameters such as isomer shift, the variation in line width, hyperfine magnetic field, and quadrupole splitting. Cation distribution revealed the relative area of undoped BaM, 12k, 2a, and 4 f 2 positions which are close to theoretical values.  相似文献   

18.
Y3?xCe x Fe5 O 12 (CeYIG) ceramics, with x = 0, 0.15, 0.25, 0.35, 0.45, and 0.5, were fabricated by a conventional ceramic sintering technique. We studied the structures and magnetic fields of a series of CeYIG ceramics using X-ray powder diffraction, a scanning electron microscope, and a superconducting quantum interference device magnetometer. Findings showed that the substitution limit of the concentration of Ce3+ ions in the yttrium iron garnet structure was approximately x = 0.25. An extra CeO2 phase was detected in the ceramic when the addition of CeO2 content overtook the limit. The lattice constants and relative densities increased by increasing the Ce3+ contents in the ceramics. First, the saturation magnetization increased gradually with increases in the substitute concentration of Ce3+ ions and then decreased gradually when x = 0.35, 0.45, and 0.5. Overall, this study showed that the Y3?xCe x Fe5 O 12 material with x ≤ 0.15 exhibited excellent magnetic properties. Hence, the material show promise for magneto-optical and microwave communication applications.  相似文献   

19.
Cu–Al substituted Co ferrite nanopowders, Co1?x Cu x Fe2?x Al x O4 (0.0 ≤ x ≤ 0.8) were synthesized by the co-precipitation method. The effect of Cu–Al substitution on the structural and magnetic properties have been investigated. X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) are used for studying the effect of variation in the Cu–Al substitution and its impact on particle size, magnetic properties such as M s and H c . Cu–Al substitution occurs and produce a secondary phase, α-Fe 2 O 3. The crystallite size of the powder calcined at 800 °C was in the range of 19–26 nm. The lattice parameter decreases with increasing Cu–Al content. The nanostructural features were examined by FESEM images. Infrared absorption (IR) spectra shows two vibrational bands; at around 600 (v 1) and 400 cm ?1 (v 2). They are attributed to the tetrahedral and octahedral group complexes of the spinel lattice, respectively. It was found that the physical and magnetic properties have changed with Cu–Al contents. The saturation magnetization decreases with the increase in Cu–Al substitution. The reduction of coercive force, saturation magnetization and magnetic moments are may be due to dilution of the magnetic interaction.  相似文献   

20.
The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO 3 - (MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x - (MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号