首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability characteristics of partially premixed turbulent lifted methane flames have been investigated and discussed in the present work. Mixture fraction and reaction zone behavior have been measured using a combined 2-D technique of simultaneous Rayleigh scattering, Laser Induced Predissociation Fluorescence (LIPF) of OH and Laser Induced Fluorescence (LIF) of C2Hx. The stability characteristics and simultaneous mixture fraction-LIPF-LIF measurements in three lifted flames with originally partially premixed jets at different mean equivalence ratio and Reynolds number are presented and discussed in this paper. Higher stability of partially premixed flames as compared to non-premixed flames has been observed. Lifted, attached, blow-out and blow-off regimes have been addressed and discussed in this work. The data show that the mixture fraction field on approaching the stabilization region is uniquely characterized by a certain level of mean and rms fluctuations. This suggests that the stabilization mechanism is likely to be controlled by premixed flame propagation at the stabilization region. Triple flame structure has been detected in the present flames, which is likely to be the appropriate model at the stabilization point.  相似文献   

2.
The effect of hydrocarbon addition on tip opening of lean and stoichiometric hydrogen-air flames is studied computationally by performing two-dimensional numerical simulations. The numerical study reveals that the flame tip of the H2-air burner stabilized flame is open at lean and stoichiometric mixture conditions. The flame tip closes upon hydrocarbon addition. The tip closing is mainly affected by preferential diffusion of the multi-component mixture and the stretch effects. In the addition of light hydrocarbon (CH4), the tip closing starts at a higher percentage of hydrocarbon addition in H2-air flames. Whereas, upon the addition of heavy hydrocarbons such as propane and butane in H2-air flames, tip closing starts with a lesser amount of hydrocarbon addition. Temperature, OH mole fraction and heat release rate have been investigated, focusing on the flame structure at the tip. The tip opening regime diagram for H2–CH4-air, H2–C3H8-air and H2–C4H10-air mixtures are presented.  相似文献   

3.
Two sets of axisymmetric laminar coflow flames, each consisting of ethylene/air nonpremixed flames with various amounts (up to 10%) of either dimethyl ether (CH3-O-CH3) or ethanol (CH3-CH2-OH) added to the fuel stream, have been examined both computationally and experimentally. Computationally, the local rectangular refinement method, which incorporates Newton's method, is used to solve the fully coupled nonlinear conservation equations on solution-adaptive grids for each flame in two spatial dimensions. The numerical model includes C6 chemical kinetic mechanisms with up to 59 species, detailed transport, and an optically thin radiation submodel. Experimentally, thermocouples are used to measure gas temperatures, and mass spectrometry is used to determine concentrations of over 35 species along the flame centerline. Computational results are examined throughout each flame, and validation of the model occurs through comparison with centerline measurements. Very good agreement is observed for temperature, major species, and several minor species. As the level of additive is increased, temperatures, some major species (CO2, C2H2), flame lengths, and residence times are essentially unchanged. However, peak centerline concentrations of benzene (C6H6) increase, and this increase is largest when dimethyl ether is the additive. Computational and experimental results support the hypothesis that the dominant pathway to C6H6 formation begins with the oxygenates decomposing into methyl radical (CH3), which combines with C2 species to form propargyl (C3H3), which reacts with itself to form C6H6.  相似文献   

4.
Quantitative time-dependent images of the infrared radiation intensity from methane and dimethyl ether (DME) turbulent nonpremixed and partially premixed jet flames are measured and discussed in this work. The fuel compositions (CH4/H2/N2, C2H6O/H2/N2, CH4/air, and C2H6O/air) and Reynolds numbers (15,200–46,250) for the flames were selected following the guidelines of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (TNF Workshop). The images of the radiation intensity are acquired using a calibrated high speed infrared camera and three band-pass filters. The band-pass filters enable measurements of radiation from water vapor and carbon dioxide over the entire flame length and beyond. The images reveal localized regions of high and low intensity characteristic of turbulent flames. The peak mean radiation intensity is approximately 15% larger for the DME nonpremixed flames and 30% larger for the DME partially premixed flames in comparison to the corresponding methane flames. The trends are explained by a combination of higher temperatures and longer stoichiometric flame lengths for the DME flames. The longer flame lengths are attributed to the higher density of the DME fuel mixtures based on existing flame length scaling relationships. The longer flame lengths result in larger volumes of high temperature gas and correspondingly higher path-integrated radiation intensities near and downstream of the stoichiometric flame length. The radiation intensity measurements acquired with the infrared camera agree with existing spectroscopy measurements demonstrating the quantitative nature of the present imaging technique. The images provide new benchmark data of turbulent nonpremixed and partially premixed jet flames. The images can be compared with results of large eddy simulations rendered in the form of quantitative images of the infrared radiation intensity. Such comparisons are expected to support the evaluation of models used in turbulent combustion and radiation simulations.  相似文献   

5.
In the present paper autoignition is studied as the main stabilization mechanism in turbulent lifted H2/N2 jet flames issuing into a vitiated hot coflow. The numerical study is performed using the joint scalar PDF approach with detailed chemistry in a two dimensional axisymmetric domain. The SSG Reynolds stress model is used as a turbulence model in the simulation. Chemical structure and characteristics of autoignition are investigated using various methods and parameters. Reaction rate analysis is made to analyze the ignition process at the flame base. The results show the occurrence of a chain branching reaction preceding thermal runaway, which boosts the chain branching process in the flame. This demonstrates the large impact of autoignition at the flame base on the stabilization of the lifted turbulent flame. Further investigation using the scatter-plots of scalars reveals the characteristics of the ignition. The relation between the behavior of temperature and of key intermediate species demonstrates the formation of OH through consumption of HO2 at nearly isothermal conditions in a very lean-fuel mixture at the flame base. Flux analyses in the conservation equations of species are used to explore the impacts of mass transport on ignition process. Ignition is found to be mainly controlled by chemical features rather than the mixing processes near the flame base. Characteristics of autoignition are also investigated in terms of Damköhler number and progress variable.  相似文献   

6.
An experimental and numerical investigation of counterflow prevaporized partially premixed n-heptane flames is reported. The major objective is to provide well-resolved experimental data regarding the detailed structure and emission characteristics of these flames, including profiles of C1-C6, and aromatic species (benzene and toluene) that play an important role in soot formation. n-Heptane is considered a surrogate for liquid hydrocarbon fuels used in many propulsion and power generation systems. A counterflow geometry is employed, since it provides a nearly one-dimensional flat flame that facilitates both detailed measurements and simulations using comprehensive chemistry and transport models. The measurements are compared with predictions using a detailed n-heptane oxidation mechanism that includes the chemistry of NOx and PAH formation. The reaction mechanism was synergistically improved using pathway analysis and measured benzene profiles and then used to characterize the effects of partial premixing and strain rate on the flame structure and the production of NOx and soot precursors. Measurements and predictions exhibit excellent agreement for temperature and major species profiles (N2, O2, n-C7H16, CO2, CO, H2), and reasonably good agreement for intermediate (CH4, C2H4, C2H2, C3Hx) and higher hydrocarbon species (C4H8, C4H6, C4H4, C4H2, C5H10, C6H12) and aromatic species (toluene and benzene). Both the measurements and predictions also indicate the existence of two partially premixed regimes; a double flame regime for ?<5.0, characterized by spatially separated rich premixed and nonpremixed reaction zones, and a merged flame regime for ?>5.0. The NOx and soot precursor emissions exhibit strong dependence on partial premixing and strain rate in the first regime and relatively weak dependence in the second regime. At higher levels of partial premixing, NOx emission is increased due to increased residence time and higher peak temperature. In contrast, the emissions of acetylene and PAH species are reduced by partial premixing because their peak locations move away from the stagnation plane, resulting in lower residence time, and the increased amount of oxygen in the system drives the reactions to the oxidation pathways. The effects of partial premixing and strain rate on the production of PAH species become progressively stronger as the number of aromatic rings increases.  相似文献   

7.
The effects of variations in the fuel composition on the characteristics of H2/CO/CH4/air flames of gasified biomass are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position and temperature are performed in the premixed stoichiometric H2/CO/CH4/air opposed-jet flames with various H2 and CO contents in the fuel. The adiabatic flame temperatures and laminar burning velocities are calculated using the EQUIL and PREMIX codes of Chemkin collection 3.5, respectively. Whereas the flame structures of the laminar premixed stoichiometric H2/CO/CH4/air opposed-jet flames are simulated using the OPPDIF package with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position and temperature of the stoichiometric H2/CO/CH4/air opposed-jet flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that the reaction rate of reactions (R38), (R46), and (R84) increase with increasing H2 content in the fuel mixture. It is also found that the increase in the laminar flame speed with H2 addition is most likely due to an increase in active radicals during combustion (chemical effect), rather than from changes in the adiabatic flame temperature (thermal effect). Chemical kinetic structure and sensitivity analyses indicate that for the stoichiometric H2/CO/CH4/air flames with fixed H2 concentration in the fuel mixture, the reactions (R99) and (R46) play a dominant role in affecting the laminar burning velocity as the CO content in the fuel is increased.  相似文献   

8.
《Combustion and Flame》2001,124(1-2):311-325
We have investigated lifted triple flames and addressed issues related to flame stabilization. The stabilization of nonpremixed flames has been argued to result due to the existence of a premixing zone of sufficient reactivity, which causes propagating premixed reaction zones to anchor a nonpremixed zone. We first validate our simulations with detailed measurements in more tractable methane–air burner-stabilized flames. Thereafter, we simulate lifted flames without significantly modifying the boundary conditions used for investigating the burner-stabilized flames. The similarities and differences between the structures of lifted and burner-stabilized flames are elucidated, and the role of the laminar flame speed in the stabilization of lifted triple flames is characterized. The reaction zone topography in the flame is as follows. The flame consists of an outer lean premixed reaction zone, an inner rich premixed reaction zone, and a nonpremixed reaction zone where partially oxidized fuel and oxidizer (from the rich and lean premixed reaction zones, respectively) mix in stoichiometric proportion and thereafter burn. The region with the highest temperatures lies between the inner premixed and the central nonpremixed reaction zone. The heat released in the reaction zones is transported both upstream (by diffusion) and downstream to other portions of the flame. Measured and simulated species concentration profiles of reactant (O2, CH4) consumption, intermediate (CO, H2) formation followed by intermediate consumption and product (CO2, H2O) formation are presented. A lifted flame is simulated by conceptualizing a splitter wall of infinitesimal thickness. The flame liftoff increases the height of the inner premixed reaction zone due to the modification of the upstream flow field. However, both the lifted and burner-stabilized flames exhibit remarkable similarity with respect to the shapes and separation distances regarding the three reaction zones. The heat-release distribution and the scalar profiles are also virtually identical for the lifted and burner-stabilized flames in mixture fraction space and attest to the similitude between the burner-stabilized and lifted flames. In the lifted flame, the velocity field diverges upstream of the flame, causing the velocity to reach a minimum value at the triple point. The streamwise velocity at the triple point is ≈0.45 m s−1 (in accord with the propagation speed for stoichiometric methane–air flame), whereas the velocity upstream of the triple point equals 0.7 m s−1, which is in excess of the unstretched flame propagation speed. This is in agreement with measurements reported by other investigators. In future work we will address the behavior of this velocity as the equivalence ratio, the inlet velocity profile, and inlet mixture fraction are changed.  相似文献   

9.
In order to investigate oxyfuel combustion characteristics of typical composition of coal gasification syngas connected to CCS systems. Instantaneous flame front structure of turbulent premixed flames of CO/H2/O2/CO2 mixtures which represent syngas oxyfuel combustion was quantitatively studied comparing with CH4/air and syngas/air flames by using a nozzle-type Bunsen burner. Hot-wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Image processing and statistical analyzing were performed using the Matlab Software. Flame surface density, mean progress variable, local curvature radius, mean flame volume, and flame thickness, were obtained. Results show that turbulent premixed flames of syngas possess wrinkled flame front structure which is a general feature of turbulent premixed flames. Flame surface density for the CO/H2/O2/CO2 flame is much larger than that of CO/H2/O2/air and CH4/air flames. This is mainly caused by the smaller flame intrinsic instability scale, which would lead to smaller scales and less flame passivity response to turbulence presented by Markstain length, which reduce the local flame stretch against turbulence vortex. Peak value of Possibility Density Function (PDF) distribution of local curvature radius, R, for CO/H2/O2/CO2 flames is larger than those of CO/H2/O2/air and CH4/air flames at both positive and negative side and the corresponding R of absolute peak PDF is the smallest. This demonstrates that the most frequent scale is the smallest for CO/H2/O2/CO2 flames. Mean flame volume of CO/H2/O2/CO2 flame is smaller than that of CH4/air flame even smaller than that of CO/H2/O2/air flame. This would be due to the lower flame height and smaller flame wrinkles.  相似文献   

10.
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane–air flames (Le = 0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H2 and H2O through the preheat zone ahead of CO2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO2 is accumulated.  相似文献   

11.
Due to energy crisis and concern regarding the environmental emission, hydrogen as an alternative clean fuel has received more attention. To develop new devices or upgrade the conventional combustion systems for hydrogen flames, fundamental concepts necessary for burner design need to be investigated. In the present work, characteristics of flame stabilization for a turbulent lifted H2/N2 jet flame issuing into a hot coflow of lean combustion are investigated using the Scalar probability density function (PDF) approach. Calculations are carried out for different coflow temperatures, concentrations of species and equivalence ratio. Reaction rate analyses are used to investigate the dominant chemistry at the flame base for a variety of conditions. The results show the occurrence of autoignition at the flame base that is responsible for the stabilization of the lifted turbulent flame. The coflow temperature plays an important role in the relative contribution of elementary reactions and the determination of the dominant chemistry at the flame base. This leads to a high sensitivity of lift-off height to the coflow temperature. Oxygen and water content in the hot coflow could affect the ignition process and lift-off height depending on the dominant chemistry at the flame base. Furthermore, the effect of oxygen content in hot coflow is found to be very important on the reactions controlling the high temperature combustion.  相似文献   

12.
Downstream interactions between lean premixed flames with mutually different fuels of (50% H2 + 50% CO) and CH4 are numerically investigated particularly on and near lean extinction limits in order to provide fundamental database for the design of cofiring burners with hydrocarbon and syngas under a retrofit concept. In the current study the anomalous combination of lean premixed flames is provided such that even a weaker CH4-air flame temperature is higher than a stronger syngas-air flame temperature, and, based on a deficient reactant concept, the effective Lewis numbers Leeff ≈ 1 for lean premixed (50% H2 + 50% CO)-air mixture and LeD < 1 for CH4-air mixture. It is found that the interaction characteristics between lean premixed (50% H2 + 50% CO)-air and CH4-air flames are quite different from those between the same hydrocarbon flames. The lean extinction boundaries are of slanted shape, thereby indicating strong interactions. The upper extinction boundaries have negative flame speeds while the lower extinction boundaries have both negative and positive flame speeds. The results also show that the flame interaction characteristics do not follow the general tendency of Lewis number, which has been well described in interactions between the same hydrocarbon flames, but have the strong dependency of direct interaction factors such as flame temperature, the distance between two flames, and radical-sharing. Importance of chain carrier radicals such as H is also addressed in the downstream interactions between lean premixed (50% H2 + 50% CO)-air and CH4-air flames.  相似文献   

13.
In this study, we investigated the H2-induced transition of confined swirl flames from the “V” to “M” shape. H2-enriched lean premixed CH4/H2/air flames with H2 fractions up to 80% were conducted. The flame structure was obtained with Planar Laser-Induced Fluorescence (PLIF) of the OH radical. Flow fields were measured with Particle Image Velocimetry (PIV). It was observed that the flame tip in the outer shear layer gradually propagated upstream and finally anchored to the injector with the hydrogen fractions increase, yielding the transition from the “V” to “M” flame. We examined the flame structures and the flame flow dynamics during the transition. The shape transition was directly related to the evolution of the corner flame along the outer shear layer. With H2 addition, the outer recirculation zone first appeared downstream where the corner flame started to propagate upstream; then, the recirculation zone expanded upward to form a stable “M” flame gradually. The flow straining was observed to influence the stabilization of the outer shear layer flame significantly. This study can be useful for the understanding of recirculation-stabilized swirling flames with strong confinement. The flame structure and the flow characteristics of flames with a high H2 content are also valuable for model validation.  相似文献   

14.
Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH4/O2/N2 flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N2-CO2 CARS process. The second harmonic output (∼532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear β-BBO crystals, pumped using the third harmonic output (∼355 nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of ∼250 cm−1. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH4/O2/N2 non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s−1 at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO2/N2 concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations.  相似文献   

15.
Tubular flames are ideal for the study of stretch and curvature effects on flame structure, extinction, and instabilities. Tubular flames have uniform stretch and curvature and each parameter can be varied independently. Curvature strengthens or weakens preferential diffusion effects on the tubular flame and the strengthening or weakening is proportional to the ratio of the flame thickness to the flame radius. Premixed flames can be studied in the standard tubular burner where a single premixed gas stream flows radially inward to the cylindrical flame surface and products exit as opposed jets. Premixed, diffusion and partially premixed flames can be studied in the opposed tubular flame where opposed radial flows meet at a cylindrical stagnation surface and products exit as opposed jets. The tubular flame flow configurations can be mathematically reduced to a two-point boundary value solution along the single radial coordinate. Non-intrusive measurements of temperature and major species concentrations have been made with laser-induced Raman scattering in an optically accessible tubular burner for both premixed and diffusion flames. The laser measurements of the flame structure are in good agreement with numerical simulations of the tubular flame. Due to the strong enhancement of preferential diffusion effects in tubular flames, the theory-data comparison can be very sensitive to the molecular transport model and the chemical kinetic mechanism. The strengthening or weakening of the tubular flame with curvature can increase or decrease the extinction strain rate of tubular flames. For lean H2-air mixtures, the tubular flame can have an extinction strain rate many times higher than the corresponding opposed jet flame. More complex cellular tubular flames with highly curved flame cells surrounded by local extinction can be formed under both premixed and non-premixed conditions. In the hydrogen fueled premixed tubular flames, thermal-diffusive flame instabilities result in the formation of a uniform symmetric petal flames far from extinction. In opposed-flow tubular diffusion flames, thermal-diffusive flame instabilities result in cellular flames very close to extinction. Both of these flames are candidates for further study of flame curvature and extinction.  相似文献   

16.
The CO/H2/CO2/O2, CO/H2/CO2/air turbulent premixed flames as the model of syngas oxyfuel and syngas/air combustion were studied experimentally and compared to that of CH4/air mixtures at high pressures up to 1.0 MPa. Hydrogen ratio in syngas was set to be 35%, 50% and 65% in volumetric fraction. Four perforated plates are used to generate wide range of turbulence intensity and scales. The instantaneous flame structure was measured with OH-PLIF technique and then statistic flame structure parameters and turbulent burning velocity were derived to interpret the multi scale turbulence-flame interaction. Results show that the flame structure of syngas is wrinkled and convex cusps to the unburned mixtures are sharper and deeper comparing to that of CH4 flames. Pressure has a dominating effect on flame wrinkling other than mixtures composition at high pressure of 1.0 MPa. The flame surface density, Σ of syngas is larger than that of CH4. The Σ of syngas flames is almost independent on pressure and hydrogen ratio especially when hydrogen ratio is over 50% which is a significant feature of syngas combustion. Larger flame surface density for syngas flames mainly comes from the finer structure with smaller wrinkles which is the result of more intensive flame intrinsic instability. The ST/SL of syngas is larger than CH4 and it slightly increases with the pressure rise. The ST/SL of syngas oxyfuel is similar to that of syngas/air flames in the present study. The ST/SL increases with the increase of hydrogen ratio and keeps almost constant when hydrogen ratio is over 50%.  相似文献   

17.
The structures of freely propagating rich CH4/air and CH4/O2 flames were studied numerically using a relatively detailed reaction mechanism. Species diffusion was modeled using five different methods/assumptions to investigate the effects of species diffusion, in particular H2 and H, on superadiabatic flame temperature. With the preferential diffusion of H2 and H accounted for, significant amount of H2 and H produced in the flame front diffuse from the reaction zone to the preheat zone. The preferential diffusion of H2 from the reaction zone to the preheat zone has negligible effects on the phenomenon of superadiabatic flame temperature in both CH4/air and CH4/O2 flames. It is therefore demonstrated that the superadiabatic flame temperature phenomenon in rich hydrocarbon flames is not due to the preferential diffusion of H2 from the reaction zone to the preheat zone as recently suggested by Zamashchikov et al. [V.V. Zamashchikov, I.G. Namyatov, V.A. Bunev, V.S. Babkin, Combust. Explosion Shock Waves 40 (2004) 32]. The suppression of the preferential diffusion of H radicals from the reaction zone to the preheat zone drastically reduces the degree of superadiabaticity in rich CH4/O2 flames. The preferential diffusion of H radicals plays an important role in the occurrence of superadiabatic flame temperature. The assumption of unity Lewis number for all species leads to the suppression of H radical diffusion from the reaction zone to the preheat zone and significant diffusion of CO2 from the postflame zone to the reaction zone. Consequently, the degree of superadiabaticity of flame temperature is also significantly reduced. Through reaction flux analyses and numerical experiments, the chemical nature of the superadiabatic flame temperature phenomenon in rich CH4/air and CH4/O2 flames was identified to be the relative scarcity of H radical, which leads to overshoot of H2O and CH2CO in CH4/air flames and overshoot of H2O in CH4/O2 flames.  相似文献   

18.
Instantaneous flame front structure of syngas turbulent premixed flames including the local radius of curvature, the characteristic radius of curvature, the fractal inner cutoff scale and the local flame angle were derived from the experimental OH-PLIF images. The CO/H2/CO2/air flames as a model of syngas/air combustion were investigated at pressure of 0.5 MPa and compared to that of CH4/air flames. The convex and concave structures of the flame front were detected and statistical analysis including the PDF and ADF of the local radius of curvature and local flame angle were conducted. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is strongly affected by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.  相似文献   

19.
Methane and hydrogen-enriched (25 vol% and 50 vol% H2-enriched CH4) methane/air premixed flames were investigated in a gas turbine model combustor under atmospheric conditions. The flame operability ranges were mapped at different Reynold numbers (Re), showing the dependence on Re and H2 concentrations. The effects of equivalence ratio (Φ), Re, and H2 enrichment on flame structure were examined employing OH-PLIF measurement. For CH4/air cases, the flame was stabilized with an M shape; while for H2-enriched cases, the flame transitions to a П shape above a specific Φ. This transition was observed to influence significantly the flashback limits. The flame shape transition is most likely a result of H2 enrichment, occurring due to the increase in flame speed, higher resistance of the flame to the strain rate, and change in the inner recirculation zone. Flow fields of CH4/air flames were compared between low and high Re cases employing high-speed PIV. The flashback events, led by two mechanisms (combustion-induced vortex breakdown, CIVB, and boundary-layer flashback, BLF), were observed and recorded using high-speed OH chemiluminescence imaging. It was found that the CIVB flashback occurred only for CH4 flames with M shape, whereas the BLF occurs for all H2-enriched flames with П shape.  相似文献   

20.
The calculation of ion currents in hydrocarbon flames was attempted to test a mechanism involving temperature dependence. Values of [CH] and [O] in the flame are available in some cases of permixed methaneoxygen flames, but not for the diffusion flame of H2 and air containing hydrocarbon. For the latter cases a relationship between [CH4] and [CH] was sought, using the kinetics of the stages CH4 → CH3 → CH2 → CH → CHO+ and of the competitive combustion to oxygenated products. An approximate value of the ionization efficiency (φ) of CH4 was calculated and found to agree with experimental determinations in premixed CH4O2 and diffusion H2air plus CH4 flames. The maximum saturation current was calculated for a premixed CH4O2 flame using literature data, and a modified method was applied to a H2air diffusion flame. The shape of the hydrogen flame ionization detector response curve was calculated from the data of H2 oxidation kinetics and the ionization path CH4 → CHO+. The calculated curve was a reasonable representation of the experimental observations, and the calculated maximum response was within an order of magnitude of the observed value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号