首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120–150 °C) and at different air–fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air–fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NOx emissions are lower than 10 ppm however HC and CO emissions are higher.  相似文献   

2.
In this experimental study, hydrogen was inducted along with air and diesel was injected into the cylinder using a high pressure common rail system, in a single cylinder homogeneous charge compression ignition engine. An electronic controller was used to set the required injection timing of diesel for best thermal efficiency. The influences of hydrogen to diesel energy ratio, output of the engine and exhaust gas recirculation (EGR) on performance, emissions and combustion were studied in detail. An increase in the amount of hydrogen improved the thermal efficiency by retarding the combustion process. It also lowered the exhaust emissions. Large amounts of hydrogen and EGR were needed at high outputs for suppressing knock. The range of operation was brake mean effective pressures of 2–4 bar. The levels of HC and CO emitted were not significantly influenced by the amount of hydrogen that was used.  相似文献   

3.
The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether. The results show that dimethyl ether (DME) HCCI engine can work stably and can realize zero nitrogen oxides (NOx) emission and smokeless combustion under the compression ratio of both 10.7 and 14. The combustion process has obvious two stage combustion characteristics at ɛ = 10.7 (ɛ refers to compression ratio), and the combustion beginning point is decided by the compression temperature, which varies very little with the engine load; the combustion beginning point is closely related to the engine load (concentration of mixture) with the increase in the compression temperature, and it moves forward versus crank angle with the increase in the engine load at ɛ = 14; the combustion durations are shortened with the increase in the engine load under both compression ratios. __________ Translated from Chinese Journal Combustion Engine Engineering, 2006, 27(4): 9–12 [译自: 内燃机工程]  相似文献   

4.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

5.
The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed.Comparisons betweennumerical simulation and experiments showed a basic agreement.The combustion process of homogeneouscharge compression ignition(HCCI)engine whose piston surface has been coated with catalyst(rhodium andplatinum)was numerically investigated.A multi-dimensional model with detailed chemical kinetics was built.The effects of catalytic combustion on the ignition timing,the temperature and CO concentration fields,and HC,CO and NO_x emissions of the HCCI engine were discussed.The results showed the ignition timing of the HCCIengine was advanced and the emissions of HC and CO were decreased by the catalysis.  相似文献   

6.
Homogeneous charge compression ignition (HCCI) has challenges in ignition timing control, combustion rate control, and operating range extension. In this paper, HCCI combustion was studied in a two-cylinder gasoline direct injection (GDI) engine with negative valve overlap (NVO). A two-stage gasoline direct injection strategy combined with negative valve overlap was used to control mixture formation and combustion. The gasoline engine could be operated in HCCI combustion mode at a speed range of 800–2 200 r/min and load, indicated mean effective pressure (IMEP) range of 0.1–0.53 MPa. The engine fuel consumption is below 240 g/(kW−1·h−1), and the NO x emission is below 4 × 10−5 without soot emission. The effect of different injection strategies on HCCI combustion was studied. The experimental results indicated that the coefficient of variation of the engine cycle decreased by using NVO with two-stage direct injection; the ignition timing and combustion rate could be controlled; and the operational range of HCCI combustion could be extended. Translated from J Tsinghua Univ (Sci & Tech), 2006, 46(5): 720–723 [译自: 清华大学学报]  相似文献   

7.
This article is part of the project to model the kinetics of high-temperature combustions, occurring behind shock waves and in detonation waves. The “conventional” semi-empirical correlations of ignition delays have been reformulated, by keeping the Arrhenius equation form. It is shown how a polynomial with 3N coefficients (where N∈[1,4] is the number of adjustable kinetic parameters, likely to be simultaneously chosen among the temperature T, the pressure P, the inert fraction XAr, and the equivalence ratio Φ) can reproduce the delays predicted by the Curran et al. [H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129 (2002) 253-280] detailed mechanism (565 species and 2538 reactions), over a wide range of conditions (comparable with the validity domain). The deviations between the simulated times and their fits (typically 1%) are definitely lower than the uncertainties related to the mechanism (at least 25%). In addition, using this new formalism to evaluate these durations is about 106 times faster than simulating them with Senkin (Chemkin III package) and only 10 times slower than using the classical correlations. The adaptation of the traditional method for predicting delays is interesting for modeling, because those performances are difficult to obtain simultaneously with other reduction methods (either purely mathematical, chemical, or even mixed). After a physical and mathematical justification of the proposed formalism, some of its potentialities for n-heptane combustion are presented. In particular, the trends of simulated delays and activation energies are shown for , , XAr∈[0,0.7], and Φ∈[0.25,4.0].  相似文献   

8.
This paper presents experimental data for the oxidation of two surrogates for the large alkylbenzene class of compounds contained in diesel fuels, namely n-decylbenzene. A 57:43 molar% mixture of n-propylbenzene:n  -heptane in air (21% O2O2, 79% N2N2) was used in addition to a 64:36 molar% mixture of n-butylbenzene:36% n-heptane in air. These mixtures were designed to contain a similar carbon/hydrogen ratio, molecular weight and aromatic/alkane ratio when compared to n-decylbenzene. Nominal equivalence ratios of 0.3, 0.5, 1.0 and 2.0 were used. Ignition times were measured at 1 atm in the shock tube and at pressures of 10, 30 and 50 atm in both the shock tube and in the rapid compression machine. The temperature range studied was from approximately 650–1700 K. The effects of reflected shock pressure and equivalence ratio on ignition delay time were determined and common trends highlighted. It was noted that both mixtures showed similar reactivity throughout the temperature range studied. A reaction mechanism published previously was used to simulate this data. Overall the reaction mechanism captures the experimental data reasonably successfully with a variation of approximately a factor of 2 for mixtures at 10 atm and fuel-rich and stoichiometric conditions.  相似文献   

9.
This article reports an experimental study on the combustion characteristics and emissions of homogenous charge compression ignition (HCCI) combustion using n-heptane doped with methyl tert-butyl ether (MTBE). The experiments were conducted on a single cylinder HCCI engine using neat n-heptane and 10%, 20%, 30%, 40% and 50% (by volume) MTBE/n-heptane blends at constant engine speed. The experimental results reveal that the ignition timing of the low temperature reaction (LTR) gets retarded, the peak values of heat release during the LTR decrease and the negative temperature coefficient (NTC) duration gets prolonged with the increase of MTBE in the blends. Consequently, the ignition timing of the high temperature reaction (HTR) gets delayed and both the attainable maximum indicated mean effective pressure (IMEP) and the lowest stable IMEP increase. Parametric studies on CO and HC emissions reveal that the maximum combustion temperature, pressure rise rate, IMEP, ignition timing of the HTR, combustion duration and fuel components have important impacts on HC emission, while the main parameters that show an important influence on CO emissions are the maximum combustion temperature, pressure rise rate, IMEP and combustion duration. Moreover, in order to suppress the CO and HC emissions to a low level, the maximum combustion temperature should be higher than 1500 K, the maximum pressure rise rate larger than 0.5 MPa/°CA, the IMEP above 0.3 MPa and the combustion duration shorter than 9 °CA.  相似文献   

10.
The autoignition process of single n-heptane droplets in air is simulated for spherical symmetry and at constant pressure. Using a detailed transport model and detailed chemical kinetics, the governing equations of the two phases are solved in a fully coupled way. The ambient gas temperature is varied from 600 to 2000 K. Simulations are performed for isobaric conditions. The initial droplet radius ranges from 10 to 200 μm. The influence of different physical parameters, such as ambient pressure, droplet radius, or initial conditions, on the ignition delay time and the location of the ignition is investigated. The gas temperature turns out to be the parameter dominating the ignition process. The droplet temperature shows a minor influence on the ignition delay time. The influence of the droplet radius on the ignition delay shows a high sensitivity to other ambient conditions, such as ambient temperature and pressure.  相似文献   

11.
A technique was developed and applied to understand the mechanism of fuel oxidation in an internal combustion engine. This methodology determines the fuel and concentrations of various intermediates during the combustion cycle. A time-resolved measurement of a large number of species is the objective of this work and is achieved by the use of a sampling probe developed in-house. A system featuring an electromagnetically actuated sampling valve with internal N2 dilution was developed for sampling gases coming from the combustion chamber. Combustion species include O2, CO2, CO, NOx, fuel components, and hydrocarbons produced due to incomplete combustion of fuel. Combustion gases were collected and analyzed with the objectives of analysis by an automotive exhaust analyzer, separation by gas chromatography, and detection by flame ionization detection and mass spectrometry. The work presented was processed in a homogeneous charge compression ignition combustion mode context.  相似文献   

12.
Homogeneous charge compression ignition (HCCI) engines are drawing attracting attention as the next-generation’s internal combustion engine, mainly because of its very low NOx and soot emissions and also for improvement in engine efficiency. Much research has been carried out in order to go deeper in this combustion process using multizone models or CFD codes. These simulation tools, although they can give a detailed view of the combustion process, are very time consuming and the results depend a lot on the initial conditions. A previous step to be considered in the simulation of the HCCI process is a heat release law evaluated from results of the experiment and a zero-dimensional model. This paper focuses on the development of a new heat release rate (HRR) law that models the HCCI process when the combustion chamber is considered as a homogeneous volume. The parameters of this law have been adjusted through an optimization process that has allowed to fit the combustion chamber pressure. All the engine operative conditions from low to full load have been successfully simulated with this HRR law, with the maximum error in the estimation of combustion chamber pressure less than 2%.  相似文献   

13.
Autoignition of iso-octane was examined using a rapid compression facility (RCF) with iso-octane, oxygen, nitrogen, and argon mixtures. The effects of typical homogeneous charge compression ignition (HCCI) conditions on the iso-octane ignition characteristics were studied. Experimental results for ignition delay times, τign, were obtained from pressure time-histories. The experiments were conducted over a range of equivalence ratios (?=0.25-1.0), pressures (P=5.12-23 atm), temperatures (T=943-1027 K), and oxygen mole fractions (χO2=9-21%), and with the addition of trace amounts of combustion product gases (CO2 and H2O). It was found that the ignition delay times were well represented by the expression
  相似文献   

14.
HCCI (Homogeneous Charge Compression Ignition) has been touted for many years as the alternate technology of choice for future engines, preserving the inherent efficiency of CIDI (Compression Ignition Direct Injection) engines while significantly reducing emissions. The current direction for all published diesel HCCI research is mixture preparation using the direct injection – system, referred to as internal mixture formation. The benefit of internal mixture formation is that it utilizes an already available direct injection system. Direct injected diesel HCCI can be divided into two areas, early injection (early in the compression stroke) and late injection (usually after Top Dead Center (aTDC)). Early direct injection HCCI requires carefully designed fuel injector to minimize the fuel wall-wetting that can cause combustion inefficiency and oil dilution. Late direct injection HCCI requires a long ignition delay and rapid mixing rate to achieve the homogeneous mixture. The ignition delay is extended by retarding the injection timing and rapid mixing rate was achieved by combining high swirl with toroidal combustion-bowl geometry. There is a compromise between Direct Injection (DI) and HCCI combustion regimes. Even under ideal conditions, it can prove difficult to form a truly homogeneous charge, which leads to elevated emissions when compared to true homogenous charge combustion and also strongly contribute to the high sensitivity of the combustion phasing to external parameters. The alternative to the internal mixture formation is, predictably, external mixture formation. By introducing the fuel external to the combustion chamber one can use the turbulence intake process to create a homogeneous charge regardless of engine conditions. This eliminates the need for combustion system changes which were necessary for the internal mixture formation method. With this method, the combustion system remains fully optimized for direct injection and also capable of running in HCCI combustion mode with nearly ideal mixture preparation. The key to the external mixture formation with diesel fuel is proper mixture preparation.  相似文献   

15.
The thermal and chemical effects of a one-dimensional, premixed flame quenching against a single surface are studied numerically. Fuels considered include n-heptane and molar-based mixtures of 95/5 and 70/30 percent n-heptane and hydrogen, respectively. A reduced gas-phase kinetic mechanism for n-heptane is employed. Wall boundary conditions investigated include both an adiabatic and an isothermal wall with temperatures ranging from 298 to 1200 K. The effects of equivalence ratio variations between 0.7 and 3 are investigated. The computations with n-heptane and n-heptane/hydrogen mixtures show that for wall temperatures greater than 400 K heat release rates have a higher value for the wall-interacting flame than for the freely propagating flame. It is also seen that the peak wall heat flux increases with increasing wall temperatures up to 1000 K. Chemical pathway analysis reveals the importance of radical recombination reactions at the surface to the heat release profiles of this study. The effect of H, O, and OH radical recombination near the inert wall is observed to lower the heat release spike on a 750 K isothermal boundary. The concentrations of intermediate hydrocarbons in the near-wall region are studied and related to unburned hydrocarbon formation in an engine cylinder. It is shown that a simple one-step global reaction rate expression for n-heptane fuel conversion cannot reproduce the flame-wall trends observed with the reduced n-heptane mechanism.  相似文献   

16.
The temporal phases of autoignition and combustion in an HCCI engine have been investigated in both an all-metal engine and a matching optical engine. Gasoline, a primary reference fuel mixture (PRF80), and several representative real-fuel constituents were examined. Only PRF80, which is a two-stage ignition fuel, exhibited a “cool-flame” low-temperature heat-release (LTHR) phase. For all fuels, slow exothermic reactions occurring at intermediate temperatures raised the charge temperature to the hot-ignition point. In addition to the amount of LTHR, differences in this intermediate-temperature heat-release (ITHR) phase affect the fuel ignition quality. Chemiluminescence images of iso-octane show a weak and uniform light emission during this phase. This is followed by the main high-temperature heat-release (HTHR) phase. Finally, a “burnout” phase was observed, with very weak uniform emission and near-zero heat-release rate (HRR). To better understand these combustion phases, chemiluminescence spectroscopy and chemical-kinetic analysis were applied for the single-stage ignition fuel, iso-octane, and the two-stage fuel, PRF80. For both fuels, the spectrum obtained during the ITHR phase was dominated by formaldehyde chemiluminescence. This was similar to the LTHR spectrum of PRF80, but the emission intensity and the temperature were much higher, indicating differences between the ITHR and LTHR phases. Chemical-kinetic modeling clarified the differences and similarities between the LTHR and ITHR phases and the cause of the enhanced ITHR with PRF80. The HTHR spectra for both fuels were dominated by a broad CO continuum with some contribution from bands of HCO, CH, and OH. The modeling showed that the CO+O→CO2+hν reaction responsible for the CO continuum emission tracks the HTHR well, explaining the strong correlation observed experimentally between the total chemiluminescence and HRR during the HTHR phase. It also showed that the CO continuum does not contribute to the ITHR and LTHR chemiluminescence. Bands of H2O and O2 in the red and IR regions were also detected during the HTHR, which the data indicated were most likely due to thermal excitation. The very weak light emission in the “burnout” phase also appeared to be thermal emission from H2O and O2.  相似文献   

17.
18.
Applied to the primary reference fuel n-heptane, we present the chemistry-guided reduction (CGR) formalism for generating kinetic hydrocarbon oxidation models. The approach is based on chemical lumping and species removal with the necessity analysis method, a combined reaction flow and sensitivity analysis. Independent of the fuel size, the CGR formalism generates very compact submodels for the alkane low-temperature oxidation and provides a general concept for the development of compact oxidation models for large model fuel components such as n-decane and n-tetradecane. A defined sequence of simplification steps, consisting of the compilation of a compact detailed chemical model, the application of linear chemical lumping, and finally species removal based on species necessity values, allows a significantly increased degree of reduction compared to the simple application of the necessity analysis, previously published species, or reaction removal methods. The skeletal model derived by this procedure consists of 110 species and 1170 forward and backward reactions and is validated against the full range of combustion conditions including low and high temperatures, fuel-lean and fuel-rich mixtures, pressures between 1 and 40 bar, and local (species concentration profiles in flames, plug flow and jet-stirred reactors, and reaction sensitivity coefficients) and global parameters (ignition delay times in shock tube experiments, ignition timing in a HCCI engine, and flame speeds). The species removal is based on calculations using a minimum number of parameter configurations, but complemented by a very broad parameter variation in the process of compiling the kinetic input data. We further demonstrate that the inclusion of sensitivity coefficients in the validation process allows efficient control of the reduction process. Additionally, a compact high-temperature n-heptane oxidation model of 47 species and 468 reactions was generated by the application of necessity analysis to the skeletal mechanism.  相似文献   

19.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

20.
OH concentration time-histories during n-heptane and methylcyclohexane (MCH) oxidation were measured behind reflected shock waves in a heated, high-pressure shock tube. Experimental conditions covered temperatures of 1121 to 1332 K, pressures near 15 atm, and initial fuel concentrations of 750 and 1000 ppm (by volume), and an equivalence ratio of 0.5 with O2 as the oxidizer and argon as the bath gas. OH concentrations were measured using narrow-linewidth ring-dye laser absorption near the R-branchhead of the OH A-X(0,0) system at 306.47 nm. These current measurements together with our recent results for n-dodecane oxidation [S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, Proc. Combust. Inst. 32 (2009), doi:10.1016/j.proci.2008.05.006] provide critically needed validation targets for jet fuel surrogate kinetic mechanisms and further improve understanding of high-pressure, high-temperature oxidation chemistry. Detailed comparisons of these OH time-histories with the predictions of various kinetic mechanisms were made. Sensitivity and pathway analyses for these reference fuel components were performed, leading to reaction rate recommendations with improved model performance. Current results are the first quantitative measurements of OH time-histories during high-pressure oxidation of these fuels, and hence are a critical step toward development of accurate reaction models for jet fuel surrogates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号