共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
为降低水电站长期运行过程中频繁的无规律动作对于水头高、库容小、调节性能差的水电站造成的损害,最大限度利用水头优势增发电量,提高水电站运行的效益性和安全性,提出了一种机理与数据混合驱动的水位预测方法。该方法通过PSO(Particle Swarm Optimization)算法优化耦合BP(Back Propagation)神经网络和水量平衡模型,其中,数据驱动模型提供基准值,水量平衡机理模型修正水位趋势的合理性;将该方法应用于沙坪二级水电站的水位预测,对比分析水量平衡模型、BP神经网络模型和耦合模型预测结果。结果表明:提出的耦合模型有效避免了机理模型的累积误差和数据驱动的反常性;相对于水量平衡模型和BP神经网络模型,该耦合模型具有较高的预测精度和实用性,其平均绝对百分比误差MAPE和拟合优度R2分别为0.001 3和0.97,预测幅度更贴近真实水位。研究成果可为水电站面对短期的水位变化提前做出反应提供理论依据。 相似文献
3.
4.
高精度的水位预测能为防洪决策、水资源管理等提供重要的调度依据,减少洪旱灾害损失。为提高预报精度,提出一种基于小波分析的NARX神经网络模型(DWT-NARX),综合考虑洪泽湖入湖流量、出湖流量、周边用水、前期水位等因素,对洪泽湖日水位进行预报,并与BP神经网络、NARX神经网络模型进行比较。结果表明,三种模型在短历时预报中均取得了较好的模拟预测效果。当预见期为1或2天时,Nash-Sutcliffe效率系数均大于0.9,合格率大于85%;当预见期超过3d,NARX模型在水位变幅较大的时段预测结果变差,BP模型出现严重的震荡现象,NARX和DWT-NARX模型结果均优于BP神经网络,DWT-NARX在整体上结果最优。研究成果可为洪泽湖的水位预报提供一定的参考价值。 相似文献
5.
针对多种水工建筑物相互作用和影响下的泵站水位预测难题,提出基于GRA-NARX(grey relation analysis-nonlinear autoregressive model with exogenous inputs)神经网络的泵站站前水位预测模型。该模型包括灰色关联分析(GRA)和NARX神经网络两部分,利用3种训练算法和不同时间延迟分别对密云水库调蓄工程屯佃泵站站前水位进行2 h预测,并与NARX模型和GRA-BP(grey relation analysis-back propagation)模型的预测结果进行比较。研究结果表明,GRA-NARX-BR(grey relation analysis-nonlinear autoregressive model with exogenous inputs-bayesian regularization)模型用于水位预测能够比较全面地考虑影响因子,预测精度高,相关系数最高达0.986 62,均方根误差最小为0.008 6 m,预测效果比NARX模型和GRA-BP模型好,且时间延迟越长,均方根误差越小。模型也可在其他调水工程中推广使用。 相似文献
6.
一般情况下,基坑工程位移的发展趋势可以分为3种类型,传统GM(1,1)模型由于模拟曲线为指数曲线,因此只适合于第1类趋势的位移时间序列建模。在无偏GM(1,1)模型的基础上建立修正曲线型无偏灰色预测模型和生长曲线型无偏灰色预测模型,适合于第2、3类趋势的位移时间序列建模。结合神经网络的非线性描述能力以及无偏灰色预测模型的趋势预测能力建立神经网络误差修正灰色模型。基坑位移预测实例应用结果显示,神经网络误差修正灰色模型能很好地描述基坑位移的非线性发展。 相似文献
7.
灰色马尔科夫模型在寸滩站年最高水位预测中的应用 总被引:5,自引:0,他引:5
本文将灰色系统理论与马尔科夫链理论相结合,建立灰色马尔科夫预报模型,对寸滩站年最高水位进行预报分析。从模拟效果分析,计算值与实际值大体吻合。模型可推广应用长期水文预报中。 相似文献
8.
9.
丹江口大坝加高后,回水顶托对黄龙滩电厂产生了一系列不利影响,在分析这些不利影响的过程中,需要计算丹江口大坝到黄龙滩电厂的水位流量关系。而传统的水力学方法计算量大,且过程复杂。为了能够简单高效地进行水位流量关系的计算,提出了一种基于BP神经网络模型的方法,将丹江口水库到黄龙滩电厂的河道分为两段,构建两个BP神经网络模型分别进行模拟计算。结果表明:丹江口水库至堵河口的模型的水位模拟结果最大偏差为0.011 m,均方根误差为0.003 3 m;堵河口至黄龙滩电厂的模型的水位模拟结果最大偏差为0.246 9 m,均方根误差为0.084 1 m。两个模型的模拟精度都较高,证明该方法具有可行性。 相似文献
10.
灰色模型和BP神经网络模型在城市时用水量预测中的应用比较 总被引:1,自引:0,他引:1
在城市时用水量预测模型中,灰色模型和BP神经网络模型是两个应用较为广泛的模型,是它们有着各自的优缺点,预测精度也不相同.本文以南方某市为例,基于两种模型的预测原理,利用MATLAB数学软件对该市的时用水量进行了预测,并对两个预测模型的预测结果进行了误差比较分析,得出了BP神经网络模型是适合该市的时用水量预测模型. 相似文献
11.
《人民黄河》2017,(8):137-142
基于晋北盐碱地土壤水分原位入渗试验,建立了容量为150组的盐碱地Philip入渗模型参数样本,借助MATLAB软件,分别构建基于最值归一化法、联合归一化法的BP神经网络预测模型,其中模型的输入变量为土壤基本理化参数,输出变量为Philip入渗模型参数吸渗率S和稳渗率A,由两模型的预测结果发现,预测误差均小于6%,在建模误差允许范围之内,所建模型可靠;对比模型预报结果发现,联合归一化法处理过的输入数据更具代表性,且提高了网络收敛速度及预测精度。用实测资料对基于联合归一化法建立的模型进行精度检验,结果表明对入渗参数预测的相对误差均小于10%,模型预报精度较高,可满足实际应用的要求。 相似文献
12.
13.
对时间序列建立中心逼近式GM(1,1)模型,通过优选模型的m值弱化序列变幅,利用BP神经网络对该模型残差值进行拟合修正,以此构建一个基于中心逼近式GM(1,1)模型的灰色神经网络预测模型.应用实例的计算结果表明,该模型可提高水质预测精度. 相似文献
14.
变形监测是大坝安全运行的重要保证,结合白石水库混凝土坝真空激光X向位移资料进行分析,提出应用改进的BP神经网络思想建立的安全监测模型,结合对相关数据参数进行系统性的研究,并与传统BP神经网络模型训练、预测结果对比,得出改进的BP神经网格模型优于传统BP神经网络模型,具有一定抗差能力,能够降权使用可疑值,相关系数较高,预测精度好,可在实际中广泛运用。 相似文献
15.
16.
介绍了径向基函数(RBF)神经网络的结构、原理和训练算法。以某市为研究对象,建立了RBF神经网络工业取水量预测模型,采用最近邻聚类学习算法确定径向基函数的宽度、聚类中心和权值。结果表明:RBF模型具有较强的非线性处理能力和逼近能力,且结构简洁、学习速度快、预测精度高,泛化能力强,克服了BP神经网络学习过程收敛过分依赖于初值和可能出现局部收敛的缺陷。 相似文献
17.
18.
利用Matlab神经网络工具箱,以淮河流域中游蚌埠(吴家渡)站的水文数据为基础,以流域代表站降水量作为基本影响因子,建立了淮河水域蚌埠段年径流量的Elman神经网络预测模型.人工神经网络方法被引入水文预报工作中.结果表明,人工神经网络技术可应用于流域年径流量的预报研究,且Elman神经网络的模型其强大的非线性和容错能力,显示出比相关分析、时间序列分析更有效,运算速度快,合理、可靠.具有较好的适应性和预报精度,可为水资源规划和配置提供依据.对开展水资源调查评价、综合规划等水文水资源领域的研究有着重要的意义. 相似文献
19.
Currently, regional water demand is mainly predicted by prediction models and according to actual water demand time series. However, regional water demand is affected by many factors, and the existing methods neglect dynamic mutual-restriction relation of various water demand influencing factors and influence of these factors on water demand and cannot calculate contribution rate of each factor to water demand. To address this problem, this paper, by adopting Cobb-Douglas production function, has established a regional water demand prediction model based on Cobb-Douglas model, by which the contribution rates of the regional water demand influencing factors can be calculated. It is indicated by example of Zhuhai in China that this proposed model possesses such advantages as simple modeling and high prediction accuracy by comparing with support vector machine and back-propagation neural networks models. 相似文献