首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超导故障限流器作为非线性元件的短路电流限制器,具有体积小、重量轻、损耗小、自动响应等特点。饱和铁芯型超导故障限流器由于结构简单、动作特性良好、故障后恢复能力强等技术优势,是一种可以工程应用于高压电网中的限流器。通过分析研究表明,该饱和铁芯型超导故障限流器不仅可以在故障时有效地限制短路电流,而且还能对电网稳定性产生积极的影响。  相似文献   

2.
随着交直流电网的发展,系统短路电流不断上升,传统被动型的故障电流限制措施适用性较差,新型的磁路控制型故障限流器具有响应速度快、效果精准的优势,但目前缺少磁路控制型故障限流器设备故障后的影响分析和防御手段。首先分析了磁路控制型故障限流器的原理,根据继电保护和稳控系统动作原理,研究得出磁路控制型故障限流器异常后可能引发继电保护误动和稳控系统策略失配的结论。其次为提高磁路控制型故障限流器的应用水平,提出了一种就地-紧急-电网的电网综合防御手段,并分析了磁路控制型故障限流器异常后的防御过程。然后建立了实时仿真系统验证了磁路控制型故障限流器对继电保护的影响,提高了故障限流器异常后的电网适应能力和安全运行水平。  相似文献   

3.
饱和铁心型超导限流器的直流超导绕组中的直流影响短路故障电流的限流效果,研究发现,饱和铁心型超导限流器直流超导绕组中的直流还可以抑制谐波,并减少正常情况交流电流的波形畸变率。该文提出了一种新型饱和铁心高温超导限流器。新型饱和铁心高温超导限流器在正常工作情况下,两个固态开关SSTS处于闭合状态,直流超导绕组中的直流使饱和铁心型超导限流器处于饱和状态,限流器不会出现限流现象。在短路故障情况下,两个SSTS快速动作,断开限流器直流超导绕组中的直流,提高限流能力,同时使限流电阻快速串入超导限流器的交流回路限流,进一步提高限流效果。研究了该新型限流器的工作原理,分析限流参数的变化对其限流特性的影响。通过仿真和和实验研究发现,新型限流器的限流效果非常明显,并能实现线路重合闸,电网的稳态和暂态短路电流显著减少,电网电能质量和动态稳定性得到有效提高。  相似文献   

4.
采用故障电流限制器来抑制电网故障时的短路电流是保证断路器遮断容量不致超限的有效方法。针对上海电网中持续增长的短路电流水平,讨论了几种限制故障短路电流的措施和方法。对超导型和基于FACTS技术的固态故障限流器的应用状况进行了研究,提出了在超高压电网中串联谐振式限流器的几种应用方案。最后探讨了串联谐振式限流器对继电保护和电网过电压的影响。  相似文献   

5.
在建立饱和铁心型高温超导故障限流器(saturated iron-core type high temperature superconductive fault current limiters,SR-SFCL)电磁暂态仿真计算模型基础上,对电网发生短路故障后SR-SFCL一次绕组与励磁绕组的电流、电压过渡过程进行了定量计算,深入研究了一次绕组与励磁绕组电流、电压的特征和相互关系,分析了限流器对短路电流交流分量初始值、冲击电流和稳态短路电流的限制效果。研究指出:SR-SFCL对稳态短路电流具有很好的限制作用,充分发挥限流效果的关键是缩短励磁回路的灭磁时间,灭磁时间与一次电流、灭磁电阻取值等因素关系密切。  相似文献   

6.
随着电力需求的不断发展,广东电网短路电流水平迅速提高。超导限流器对电力系统的正常运行无影响,一旦发生故障能够立即投入限制短路电流,达到对短路电流的抑制。以2015年作为研究水平年,以广东规划电网为研究对象,对广东500 kV电网短路电流水平进行计算分析。综合考虑超导限流器安装对短路电流的抑制效果、对电网发展的适应性及对电网运行的影响等方面来进行其在广东电网应用选点方案的研究,推荐西江站、东纵站及深圳站考虑作为加装超导限流器的站点,有力降低广东电网短路电流水平,促进广东电网发展。  相似文献   

7.
故障限流器能够在电网正常运行时控制串抗退出,电网故障时控制串抗快速投入,因此既能有效限制短路电流,又不影响电网正常运行。在对故障限流器的技术特点进行简要分析的基础上,进一步对故障限流器在大电网短路电流限制方面的应用进行研究,提出了故障限流器在实际电网应用的一般性分析方法。以某实际电网为例,对故障限流器在电网中应用的选址、定容方法进行了验证。结果表明:合理的选址、定容方案能够最大化发挥故障限流器对电网的短路电流限制效果。  相似文献   

8.
变压器型故障限流器限流效果研究   总被引:1,自引:0,他引:1  
介绍了变压器型故障限流器的基本原理,该限流器由电容器及二次侧带放电间隙的并联变压器组成。通过分析该故障限流器在抑制短路电流过程中的稳态特性,定量地描述了它的限流效果。研究该故障限流器在限流过程中的工作条件,利用PSCAD软件建立仿真模型,对该故障限流器在500kV超高压输电系统中的应用进行仿真。为了验该故障限流器的限流效果,给出了实用可行的短路实验电路,分别就未装设和模拟限流器情况进行了短路实验。结果显示,该故障限流器具有较好的限流效果,能够作为一种有效的保护设备限制电力系统的短路电流。  相似文献   

9.
短路电流会威胁电网电力系统的安全可靠运行,人们将超导技术应用于电力系统中,并有效结合电力技术,研制出了高温超导故障限流器。故障限流器可以限制短路电流及其所造成的危害,有效地维护电网安全。高温超导故障限流器可分为电阻型和非电阻型,饱和铁芯型高温超导限流器是非电阻型故障限流器的一种,它集众多优异特性于一体,限流恢复时间极短、限流功能可靠以及输电稳态损耗极小,因此有非常广阔的产业化前景。  相似文献   

10.
谐振型故障限流器阻抗特性仿真和参数优化   总被引:6,自引:1,他引:5  
谐振型故障电流限制器是解决超高压电网短路电流超标方案之一。相对于其他限流器,谐振型能适应电网的各种复杂操作,在工程上具有可实现性。从谐振型主电路回路入手,建立阻抗模型,分析谐振型阻抗参数的影响因素,比较了谐振型与补偿型阻抗模型的异同。从限流角度,提出了抑制因子和谐振因子2个影响阻抗参数;在考虑限流器故障态模式下,从系统角度,提出了负补偿度概念,探讨了负补偿度与装置容量和输送功率的关系。在参数优化设计理论分析上,通过仿真计算,给出了参数优化范围。仿真结果表明,阻尼回路电气强度大大降低,限流器限流效果明显。  相似文献   

11.
研究了应用于三相电力系统中偏流切换桥路型高温超导故障限流器实验室样机。正常工作情况,在电桥上引入直流偏置电流,不出现限流;短路故障情况,整流桥中的直流偏流影响限流效果,将直流偏置电压源切换到限流电阻,使故障电流限制到预定的范围。研究了该限流器的工作原理,分析限流参数的变化对其限流特性的影响。实验和仿真表明,该限流器有很好的限流和重合闸能力,能显著减少暂态及稳态的故障电流,有效提高系统的动态稳定性和电网的电能质量。  相似文献   

12.
短路电流中的周期分量和直流分量对系统短路容量都有贡献,而后者在工程应用中没有引起足够的重视.目前我国宁夏、上海、广州等电网普遍面临短路电流直流分量超标,系统保护装置难以可靠清除故障的状况,严重威胁电力系统的安全可靠性.基于此,本文提出使用超导故障限流器在限制短路电流幅值的同时,抑制短路电流直流分量的方法,缓解断路器的开断负担.目前超导限流器对短路电流直流分量的抑制效果及在高直流分量系统超导限流器的设计方法尚不清楚.因此,搭建了超导故障限流器模型,以330 kV系统为例,研究了不同直流分量时间常数下超导限流器阻值与直流分量的关系,提出了超导故障限流器失超阻值的优化设计方法.结果表明在不同的短路故障条件下,超导限流器对直流分量的抑制效果均非常明显,能有效提高系统的可靠性.  相似文献   

13.
高温超导故障限流器(SFCL)因集自触发、限流、损耗较小等优点已成为解决目前电网短路故障问题的有效设备,为电力系统中电能的传输质量和稳定性提供了有效保障。该文通过对YBCO超导材料电、热性能的分析,建立电阻型超导限流单元瞬态电阻与其通过的电流和所在环境温度变化规律的数学模型。应用电力系统电磁暂态仿真软件PSCAD/EMTDC进行线路建模和短路故障运行状态模拟,并联合采用Matlab构建等效数学模型。通过数值暂态联合仿真分析,获得单相短路故障情况下与三相短路故障情况下超导故障限流器的限流比率及超导限流单元的电阻和温度变化特征。并对超导带材进行冲击电流试验,验证其电阻变化规律。计算和分析结果表明,在不同强度的短路电流冲击下,高温超导故障限流器产生的瞬态电阻受短路电流幅值和变化率影响较大。阻值变化的速率随短路电流变化速率的增大而增大,因此对于不同程度短路电流需采取不同的限流保护策略。该研究对超导限流器距离保护的研究提供了时间维度的参考,对掌握各种复杂拓扑类型高温超导限流器限流特性具有参考意义。  相似文献   

14.
《高电压技术》2021,47(5):1595-1605
高压直流系统短路故障电流抑制问题是目前直流系统保护的核心问题之一,电感式直流故障限流器能深度抑制系统短路电流上升速度,是解决短路故障电流问题的有效方法。该文首先分析了直流系统的故障电流特性,提出了限流器性能评价指标。其次,分析了磁通耦合型、饱和铁芯型和固态型3种电感式直流限流器的工作原理、电气特性和最新研究进展。然后,归纳和对比了不同类型电感式直流限流器的电感增益倍数、动态响应时间、耐压/通流能力和成本等性能评价指标,并给出了各自优缺点和适用的直流电压等级。最后,根据未来直流电网的发展趋势,给出了各类限流器亟待解决的关键技术问题,如超导材料的失超一致性问题、饱和铁芯限流器的励磁系统性能问题、固态限流器的多功能化等,为直流限流技术的进一步研究方向做出了展望。  相似文献   

15.
改进桥路型高温超导故障限流器的实验研究   总被引:2,自引:0,他引:2  
由于基本桥路型超导限流器对短路电流稳态值限流效果较小,本文提出了一种改进桥路型高温超导故障限流器。正常工作情况下,限流器四个桥臂上的二极管均导通,对系统无影响;系统发生短路故障后的前100μs内,该限流器像基本桥路型限流器一样立即限制短路电流峰值,其后利用固态开关的切换,将二极管和偏压电源从限流器中退出运行,超导线圈的电感能限制故障电流峰值和稳态值,利用限流电阻与超导线圈串联限流,进一步提高其限流能力,从而使装置能有效地限制短路电流稳态值。实验表明,该限流器具有很好的限流和重合闸能力,能显著减少暂态及稳态的故障电流,有效提高系统动态稳定性和电网电能质量。  相似文献   

16.
短路故障电流会给系统的安全稳定和经济运行带来危害,安装故障限流器可以快速有效限制短路故障电流,在电网短路故障抑制方面具有良好的应用前景。因此提出一种基于自驱动变阻器的新型故障限流器,其在正常运行时损耗很低,短路发生时无需任何检测设备和辅助开关便可完成对首半波峰值的限制。首先对限流器动作和限流过程进行理论分析,基于COMSOL平台建立有限元模型对限流器自驱动过程的运动和受力情况进行建模仿真,并对短路故障电流造成的装置电磁环境变化加以研究。然后建立基于PSCAD/EMTDC平台的振荡电流源短路故障仿真模型,通过仿真验证了新型故障限流器的限流效果。最后完成了样机制作,并通过搭建试验回路进行了试验验证。试验结果表明:在预期电流峰值为15 kA的情况下,基于自驱动变阻器的新型故障限流器能够在4.2ms限流,将首半波故障电流峰值从15.6 kA限制到14.51 kA。通过仿真与试验验证了所提新型故障限流器的可行性,限流效果明显,可为工程应用提供一定技术参考。  相似文献   

17.
针对电力系统短路故障电流不断攀升问题,提出了一种利用整流电容电流自然换流的新型短路电流限制器。建立了该限流器的电路拓扑结构,通过理论分析详细阐述了限流过程,通过仿真验证了该限流器的特性。结果表明:限流过程经历短路电流正常上升、短路电流向电容充电支路的短暂换流和短路电流幅值被限制3个阶段;限流器投运前不影响电网的正常运行,投运后能够大幅度降低短路电流值,改善母线电压稳定性,且不会产生过电压;限流电感L和换流电容C存在某种最优配合关系,可达到最佳限流效果。  相似文献   

18.
基于快速开关的串联谐振型故障限流器的仿真   总被引:8,自引:3,他引:8  
为限制电力系统短路电流,提出了一种开关作为电容器短路元件的串联谐振型故障电流限制器拓扑。以220kV单相线路为例,利用EMTP软件对这种限流器拓扑的动态工作特性进行仿真分析。提出了2种有效措施,以抑制电流转移过程由杂散振荡导致的电容支路高频过电流和过电压现象,仿真结果表明,在电容支路中串入电抗器比在快速开关支路中串入效果更佳。快速开关的合闸时间对限流效果至为关键,对此做了具体分析。结果指出,快速开关的合闸时间须足够短(10ms以内),才能有效实现故障限流。该故障限流器拓扑结构简单、响应速度快,其中的快速开关只进行快速合闸操作,不需要具备电流开断能力,易设计,造价低廉。  相似文献   

19.
《高压电器》2013,(7):104-109
近年来,中国部分区域电网短路电流水平(特别是500 kV等级)显著增加,或逼近甚至超过设备遮断容量,制约系统安全可靠运行。相对于传统的被动式短路电流控制措施,故障电流限制器能够主动式地限制短路电流,是具有可观发展潜力的限制短路电流技术。笔者首先介绍了故障限流器的主要分类,其次调查分析了固态故障限流器研究和应用现状,重点展示了串联谐振型故障限流器的拓扑结构和工作原理。最后,针对该型限流器,从系统侧,讨论了安装位置确定、容量选择、布点优化、继电保护整定等外部应用技术问题,从装置侧,讨论了过电压分析、谐波分析和抑制、损耗分析及降损等内部核心技术问题,为中国故障限流器特别是串联谐振型高压故障限流器的深入研发与应用推广提供参考。  相似文献   

20.
提出一种改进型饱和铁心高温超导限流器,其原副边绕组均采用超导绕组,在正常工作情况,没有限流现象.在短路故障情况,由于饱和铁心型高温超导限流器直流绕组中的直流电流影响限流能力,利用IGBT1快速断开直流电流以提高限流能力;同时断开限流器交流回路的IGBT2,使与之并联的限流电阻串入限流,提高了限流能力.研究了该限流器的工作原理,分析限流参数的变化对其限流特性的影响.仿真结果及实验结果表明,该限流器能抑制电力系统的谐波,具有明显的限流效果,能显著减少电力系统的暂态和稳态故障电流,实现线路重合闸,提高了电网电能质量和电力系统动态稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号