首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multideterminant role of calcium in hippocampal synaptic plasticity   总被引:1,自引:0,他引:1  
Hippocampal CA1 cells possess several varieties of long-lasting synaptic plasticity: two different forms of long-term potentiation (LTP) and at least one form of long-term depression (LTD). All forms of synaptic plasticity are induced by afferent activation, all involve Ca2+ influx, all can be blocked by Ca2+ chelators, and all activate Ca(2+)-dependent mechanisms. The question arises as how different physiological responses can be initiated by activation of the same second messenger. We consider two hypotheses which could account for these phenomena: voltage-dependent differences in cytosolic Ca2+ concentration acting upon Ca2+ substrates of differing Ca2+ affinities and compartmentalization of the Ca2+ and its substrates.  相似文献   

2.
The role of L-type Ca2+ channels in the induction of synaptic plasticity in hippocampal slices of aged (22-24 months) and young adult (4-6 months) male Fischer 344 rats was investigated. Prolonged 1 Hz stimulation (900 pulses) of Schaffer collaterals, which normally depresses CA3/CA1 synaptic strength in aged rat slices, failed to induce long-term depression (LTD) during bath application of the L-channel antagonist nifedipine (10 microM). When 5 Hz stimulation (900 pulses) was used to modify synaptic strength, nifedipine facilitated synaptic enhancement in slices from aged, but not young, adult rats. This enhancement was pathway-specific, reversible, and impaired by the NMDA receptor (NMDAR) antagonist DL-2-amino-5-phosphonopentanoic acid (AP5). Induction of long-term potentiation (LTP) in aged rats, using 100 Hz stimulation, occluded subsequent synaptic enhancement by 5 Hz stimulation, suggesting that nifedipine-facilitated enhancement shares mechanisms in common with conventional LTP. Facilitation of synaptic enhancement by nifedipine likely was attributable to a reduction ( approximately 30%) in the Ca2+-dependent K+-mediated afterhyperpolarization (AHP), because the K+ channel blocker apamin (1 microM) similarly reduced the AHP and promoted synaptic enhancement by 5 Hz stimulation. In contrast, apamin did not block LTD induction using 1 Hz stimulation, suggesting that, in aged rats, the AHP does not influence LTD and LTP induction in a similar way. The results indicate that, during aging, L-channels can (1) facilitate LTD induction during low rates of synaptic activity and (2) impair LTP induction during higher levels of synaptic activation via an increase in the Ca2+-dependent AHP.  相似文献   

3.
To determine whether functional Ca2+ channels are present in vestibular dark cells, changes in intracellular Ca2+ concentration ([Ca2+]i) due to K+ applications were measured using the Ca(2+)-sensitive dye (fura-2) and patchclamp whole-cell recordings were made in dark cells isolated from the ampullae of the semicircular canal of the guinea pig. Exchange of the external solution with a buffer medium containing a high K+ concentration (80 mM K+ or 150 mM K+) caused a concentration-dependent increase in [Ca2+]i in vestibular dark cells. Application of 1 microM nifedipine as a Ca2+ channel antagonist completely blocked the increase in [Ca2+]i. Further treatment with 10 microM BAY K 8644 as a Ca2+ channel agonist caused an increase in [Ca2+]i. In the patch-clamp whole-cell recordings a 1-s depolarizing pulse given into the dark cell in the presence of a high barium concentration (50 mM Ba2+) induced an inward current. In determining the current-voltage relationship, a current was detected at a potential that depolarized at-50 mV and was maximal at +10 mV. This inward current was completely blocked by 1 mM La3+ as a Ca2+ channel antagonist. These findings suggest the presence of voltage-dependent Ca2+ channels in dark cells, which have a presumed function in the regulation of [Ca2+]i in the vestibular endolymph.  相似文献   

4.
Whole cell patch-clamp techniques were used to study voltage-dependent sodium (Na+), calcium (Ca2+), and potassium (K+) conductances in acutely isolated neurons from cortical layer I of adult rats. Layer I cells were identified by means of gamma-aminobutyric acid (GABA) immunocytochemistry. Positive stainings for the Ca2+-binding protein calretinin in a subset of cells, indicated the presence of Cajal-Retzius (C-R) cells. All investigated cells displayed a rather homogeneous profile of voltage-dependent membrane currents. A fast Na+ current activated at about -45 mV, was half-maximal steady-state inactivated at -66.6 mV, and recovery from inactivation followed a two-exponential process (tau1 = 8.4 ms and tau2 = 858.8 ms). Na+ currents declined rapidly with two voltage-dependent time constants, reaching baseline current after some tens of milliseconds. In a subset of cells (< 50%) a constant current level of < 65 pA remained at the end of a 90 ms step. A transient outward current (Ifast) activated approximately -40 mV, declined rapidly with a voltage-insensitive time constant (tau approximately 350 ms) and was relatively insensitive to tetraethylammonium (TEA, 20 mM). Ifast was separated into two components based on their sensitivity to 4-aminopyridine (4-AP): one was blocked by low concentrations (40 microM) and a second by high concentrations (6 mM). After elimination of Ifast by a conditioning prepulse (50 ms to -50 mV), a slow K+ current (I(KV)) could be studied in isolation. I(KV) was only moderately affected by 4-AP (6 mM), while TEA (20 mM) blocked most (> 80%) of the current. I(KV) activated at about -40 mV, declined monoexponentially in a voltage-dependent manner (tau approximately 850 ms at -30 mV), and revealed an incomplete steady-state inactivation. In addition to Ifast and I(KV), indications of a Ca2+-dependent outward current component were found. When Na+ currents, Ifast, and I(KV) were blocked by tetrodotoxin (TTX, 1 microM), 4-AP (6 mM) and TEA (20 mM) an inward current carried by Ca2+ was found. Ca2+ currents activated at depolarized potentials at about -30 mV, were completely blocked by 50 microM cadmium (Cd2+), were sensitive to verapamil (approximately 40% block by 10 microM), and were not affected by nickel (50 microM). During current clamp recordings, isolated layer I neurons displayed fast spiking behaviour with short action potentials (approximately 2 ms, measured at half maximal amplitude) of relative small amplitude (approximately 83 mV, measured from the action potential threshold).  相似文献   

5.
Studies have suggested that an increase in intracellular [Ca2+] is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, and that release of Ca2+ from intracellular storage pools can be necessary to induce LTP. We investigated whether release of Ca2+ from intracellular stores also is required for the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Both thapsigargin (1 microM) and cyclopiazonic acid (1 microM), compounds that deplete all intracellular Ca2+ pools by blocking LTP-dependent Ca2+ uptake into intracellular compartments, blocked the induction, but not maintenance, of LTD by low-frequency stimulation (LFS) (1 Hz/15 min) without affecting baseline synaptic transmission. Washout of the reversible inhibitor cyclopiazonic acid restored the ability to induce LTD. In contrast, thapsigargin did not block depotentiation of LTP by 1 Hz LFS, suggesting that LTP causes a reduction in the threshold [Ca2+] necessary for LTD. Selective depletion of the ryanodine receptor-gated Ca2+ pool by bath application of ryanodine (10 microM) also blocked the induction of LTD, indicating a requirement for Ca(2+)-induced Ca2+ release. Impalement of CA1 pyramidal neurons with microelectrodes containing thapsigargin (500 nM to 200 microM) prevented the induction of LTD at synapses on that neuron without blocking LTD in the rest of the slice. In contrast, similar filling of CA1 pyramidal neurons with ryanodine (2 microM to 5 mM) did not block the induction of LTD. From these data, we conclude that the induction of LTD requires release of Ca2+ both from a presynaptic ryanodine-sensitive pool and from postsynaptic (presumably IP3-gated) stores.  相似文献   

6.
Discusses parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine, have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. The authors discuss examples of modulation of voltage-gated Ca2+ channels and Ca2+-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. The authors review examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Nonselective cation channels have been identified and linked to important cell functions in rat hepatocytes. In this study, we characterized inward rectifying nonselective cation channels in detail by the patch clamp technique in human HepG2 cells. Channel properties were studied with high resistance borosilicate pipettes in cell-attached and inside-out configurations. With Ringer's solution and KCl as pipette solutions, the conductances were 19.7 +/- 2.1 and 22.2 +/- 0.0 picosiemens (pS), and reversal potentials were 30.9 +/- 3.5 and 31.3 +/- 4.6 mV, respectively. The channel was permeable to Ba2+, and the sequence of permeability ratios was Na+ > K+ > Cs+ > Ba2+. In the cell-attached configuration, the channel had a higher opening probability at depolarizing potential than at hyperpolarizing. In the inside-out patches with symmetric Ringer's solution, the current voltage curve was linear with conductance of 19.8 +/- 0.9 pS. Reversal potential shifted from -0.2 +/- 1.0 mV to 23.2 +/- 1.0 mV when the bath solution was replaced by dilute Ringer's solution. In the inside-out configuration, the gating was Ca(2+)-dependent, and the opening probability increased with increasing intracellular calcium concentration ([Ca2+]i). An outward rectifying channel appeared when [Ca2+]i was less than 1 mumol/L. The nonselective channel was reversibly blocked by 10 mumol/L internal flufenamic acid. We conclude that Ca(2+)- and voltage-dependent nonselective cation channels are present in human HepG2 cells. The channels might be involved in the regulation of Ca2+ influx and are associated with activation of other ion channels.  相似文献   

8.
Action potentials were recorded during impalements of some but not all smooth muscle cells of mouse vas deferens in response to both nerve stimulation and intracellular current injection. They were resistant to blockade by nifedipine (0.1-1.0 microM) but were blocked by tetrodotoxin (TTX, 0.2-1.0 microM) when this was added in the presence of nifedipine. It is suggested that voltage-dependent sodium (Na+) channels are present in mouse vas deferens that function to amplify calcium (Ca2+) influx through voltage-dependent Ca2+ channels.  相似文献   

9.
A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.  相似文献   

10.
Ca(2+)-dependent conductances have been hypothesized to play a role in the bursting pattern of electrical activity of insulin-secreting beta cells in response to high plasma glucose. A Maxi K+ channel has received the most attention, while a low-conductance Ca(2+)-activated K+ current has also been identified. We used an increasingly popular beta cell model system, the beta TC-3 cell line, and the perforated-patch technique to describe the properties of a novel Ca(2+)-dependent Cl- current [ICl(Ca)] in insulin-secreting pancreatic beta cells. The reported ICl(Ca) could be activated under physiological Ca2+ concentrations and is the first of its kind to be described in pancreatic insulin-secreting cells. We found that long depolarizing steps above -20 mV elicited an outward current which showed slow inward relaxation upon repolarization to negative membrane potentials. Both the outward currents and the inward tails showed dependence on Ca2+ influx: their current/voltage (I/V) relations followed that of the "L-like" Ca2+ current (ICa) present in these cells; they were blocked completely by the removal of external Ca2+ or application of Cd2+ at concentrations sufficient for complete block of ICa; and their magnitude increased with the depolarizing step duration. Moreover, the inward tail decayed monoexponentially with a time constant which at voltages negative to activation of ICa showed a weak linear voltage dependence, while at voltages positive to activation of ICa it followed the voltage dependence of ICa. This Ca(2+)-dependent current reversed at -21.5 mV and when the external Cl- concentration was reduced from 159 mM to 62 mM the reversal potential shifted by approximately +20 mV as predicted by the Nernst relation for a Cl(-)-selective current. Cl- channel blockers such as DIDS (100 microM) and niflumic acid (100 microM) blocked this current. We concluded that this current was a Ca(2+)-dependent Cl- current [ICl(Ca)]. From substitution of the external Cl- with various monovalent anions and from the reversal potentials we obtained the following permeability sequence for ICl(Ca): I- > NO3- > Br- > Cl- > Acetate.  相似文献   

11.
The functional effect of activating Ca2+-permeable neuronal nicotinic acetylcholine receptors (nAChRs) on vesicle secretion was studied in PC12 cells. Single cells were patch-clamped in the whole-cell configuration and stimulated with either brief pulses of nicotine to activate the Ca2+-permeable nAChRs or with voltage steps to activate voltage-dependent Ca2+ channels. Membrane capacitance was used as a measure of vesicle secretion. Activation of nAChRs by nicotine application to cells voltage clamped at -80 mV evoked secretion. This secretion was completely abolished by nicotinic antagonists. When the cells were voltage clamped at +20 mV in the presence of Cd2+ to block voltage-activated Ca2+ channels, nicotine elicited a small amount of secretion. Most interestingly, when the nAChRs were activated coincidentally with voltage-dependent Ca2+ channels, secretion was augmented approximately twofold over the secretion elicited with voltage-dependent Ca2+ channels alone. Our data suggest that Ca2+ influx via nAChRs affects Ca2+-dependent cellular functions, including vesicle secretion. In addition to the secretion evoked by nAChR activation at hyperpolarized potentials, we demonstrate that even at depolarized potentials, nAChRs provide an important Ca2+ entry pathway underlying Ca2+-dependent cellular processes such as exocytosis.  相似文献   

12.
The actions of the novel calcium (Ca2+) channel antagonist mibefradil (Ro 40-5967), a selective T-type channel blocker in myocardium, were investigated in embryonic rat spinal motoneurones maintained in culture. Whole-cell currents were recorded with the patch-clamp technique. Motoneurones displayed transient, low-voltage-activated (LVA) and, more sustained, high-voltage-activated (HVA) Ca2+ currents. The LVA currents were small and preferentially blocked by amiloride and low doses of nickel. Most of the HVA Ca2+ current flowed through N-type Ca2+ channels, while L-, and P/Q-type channels represented a smaller fraction. Mibefradil caused a rapid and reversible dose-dependent block of inward Ca2+ channel currents. Inhibition was nearly complete at 10 microM, suggesting mibefradil blockade of all subclasses of Ca2+ channels. The IC50 was approximately 1.4 microM on currents measured at 0 mV, from a holding potential of -90 mV. Inhibition of LVA Ca2+ current occurred over the same contraction range. Slow tail currents induced by the dihydropyridine agonist Bay K 8644 were also blocked by mibefradil, although with a slightly lower potency (IC50 = 3.4 microM). These broad inhibitory effects of mibefradil on Ca2+ influx were also supported by the strong inhibition of depolarization-induced intracellular calcium transients, measured from Indo-1 loaded motoneurones imaged with confocal microscopy. We conclude that mibefradil has potent blocking effects on Ca2+ channels in mammalian motoneurones. We hypothesize that therapeutic and pharmacological effects of mibefradil may involve actions on Ca2+ channels other than type T.  相似文献   

13.
1. The action of mibefradil was studied on wild type class A calcium (Ca2+) channels and various class A/L-type channel chimaeras expressed in Xenopus oocytes. The mechanism of Ca2+ channel block by mibefradil was evaluated with two microelectrode voltage clamp. 2. Resting-state dependent block (or initial block) of barium currents (IBa) through class A Ca2+ channels was concentration dependent with an IC50 value of 208+/-23 microM. 3. Mibefradil (50 microM) did not significantly affect the midpoint voltage of the steady-state inactivation curve suggesting that inactivation does not promote Ca2+ channel block. Chimaeric class A/L-type Ca2+ channels inactivating with faster or slower kinetics than wild type class A channels were equally well inhibited by mibefradil as wild type class A channels. 4. Frequent Ca2+ channel activation facilitated IBa inhibition by mibefradil (use-dependent block). Recovery from use-dependent block was voltage-dependent, being slower at depolarized membrane potentials (tau = 75+/-15 s at -70 mV, (n=6) vs tau = 20+/-2 s at -100 mV, (n=6), P<0.05). 5. We suggest that use-dependent block of class A Ca2+ channels by mibefradil occurs because of slow recovery from open channel block (SROB) and not because of drug binding to inactivated channels. 6. Voltage-dependent slow recovery from open state-dependent block provides a molecular basis for understanding the cardiovascular profile of mibefradil such as selectivity for vasculature and relative lack of negative inotropic effects.  相似文献   

14.
Activin, a member of the transforming growth factor-beta superfamily, regulates various physiological functions. In the present study, we investigated the effect of activin on neuronal differentiation, particularly the functional activity of voltage-dependent Ca2+ channels, in murine neuroblastoma C1300 cells. A slight K(+)-induced increase in the intracellular free Ca2+ ([Ca2+]i) was observed in C1300 cells untreated and treated with either activin A or all-trans-retinoic acid, while treatment with both agents significantly enhanced the increase. The [Ca2+]i increases potentiated by activin A and all-trans-retinoic acid were nearly abolished in the presence of 1.0 mM nickel or in the absence of extracellular Ca2+. Nifedipine (0.1 microM) and omega-conotoxin (1.0 microM), inhibitors of L- and N-type Ca2+ channels, respectively, partially inhibited these responses, however the inhibitory effects of these compounds were not additive. In addition, Bay K 8644, an activator of L-type Ca2+ channels, enhanced the K(+)-induced [Ca2+]i increase. These findings indicated that depolarization evoked the Ca2+ influx, at least in part, through L-type Ca2+ channels in C1300 cells treated with both activin A and all-trans-retinoic acid.  相似文献   

15.
Altered calcium (Ca2+) homeostasis is thought to play a key role in aging and neuropathology resulting in memory deficits. Several forms of hippocampal synaptic plasticity are dependent on Ca2+, providing a potential link between altered Ca2+ homeostasis and memory deficits associated with aging. The current study reviews evidence for Ca2+ dysregulation during aging which could interact with Ca(2+)-dependent synaptic plasticity. The authors suggest that changes in Ca2+ regulation could adjust the thresholds for synaptic modification, favoring processes for depression of synaptic strength during aging.  相似文献   

16.
1. UTP and UDP depolarize rat superior cervical ganglion neurons and trigger noradrenaline release from these cells. The present study investigated the mechanisms underlying this excitatory action of uridine nucleotides by measuring whole-cell voltage-dependent K+ and Ca2+ currents. 2. Steady-state outward (holding) currents measured in the amphotericin B perforated-patch configuration at a potential of -30 mV were reduced by 10 microM UTP in a reversible manner, but steady-state inward (holding) currents at -70 mV were not affected. This action of UTP was shared by the muscarinic agonist oxotremorine-M. In current-voltage curves between -20 and -100 mV, UTP diminished primarily the outwardly rectifying current components arising at potentials positive to -60 mV. 3. Slow relaxations of muscarinic K+ currents (IM) evoked by hyperpolarizations from -30 to -55 mV were also reduced by 10 microM UTP (37% inhibition) and oxotremorine-M (81% inhibition). In contrast, transient K+-currents, delayed rectifier currents, fast and slow Ca2+-dependent K+ currents, as well as voltage-dependent Ca2+ currents were not altered by UTP. 4. In conventional (open-tip) whole-cell recordings, replacement of GTP in the pipette by GDPbetaS abolished the UTP-induced inhibition of IM, whereas replacement by GTPgammaS rendered it irreversible. 5. The UTP-induced reduction of IM was half maximal at 1.5 microM with a maximum of 37% inhibition; UDP was equipotent and equieffective, while ADP was less potent (half maximal inhibition at 29 microM). ATP had no effect at < or = 30 microM. 6. The inhibition of IM induced by 10 microM UTP was antagonized by pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) at > or = 30 microM and by reactive blue 2 at > or = 10 microM, but not by suramin at concentrations up to 30 microM. 7. These results show that rat superior cervical ganglion neurons possess uridine nucleotide preferring P2Y receptors which inhibit KM channels. This effect presumably forms the basis of the excitatory action of uridine nucleotides in rat sympathetic neurons.  相似文献   

17.
Electrophysiological properties of neurofilament-positive neurones in dissociated cell cultures were prepared at postnatal days 4-5 from rat dentate gyrus and studied using the whole-cell patch-clamp technique. These cells expressed a fast-inactivating, 0.5 microM tetrodotoxin-sensitive Na+ current; a high-voltage-activated (HVA) Ca2+ current, which was 30 microM Cd(2+)- and partially 2 microM nicardipine-sensitive; and an inward rectifier current, which was sensitive to extracellularly applied 1 mM Cs+. The outward current pattern was composed of a delayed rectifier-like outward current sensitive to 20 mM tetraethylammonium (TEA) and a fast-inactivating, Ca(2+)-dependent outward current. This transient Ca(2+)-dependent K+ outward current was identified by a subtraction procedure. K+ currents recorded under conditions of blocked Ca2+ currents (after rundown of the HVA Ca2+ current or blocked by extracellularly applied Cd2+) were subtracted from control currents. By comparison with the current pattern of identified dentate granule cells, it is concluded that the investigated cell type originated from interneurones or projection neurones of the dentate hilus.  相似文献   

18.
1. The effects of diltiazem on various functional parameters were studied in bovine cultured adrenal chromaffin cells stimulated with the nicotinic receptor agonist dimethylphenylpiperazinium (DMPP) or with depolarizing Krebs-HEPES solutions containing high K+ concentrations. 2. The release of [3H]-noradrenaline induced by DMPP (100 microM for 5 min) was gradually and fully inhibited by increasing concentrations of diltiazem (IC50 = 1.3 microM). In contrast, the highest concentration of diltiazem used (10 microM) inhibited the response to high K+ (59 mM for 5 min) by only 25%. 3. 45Ca2+ uptake into cells stimulated with DMPP (100 microM for 1 min) was also blocked by diltiazem in a concentration-dependent manner (IC50 = 0.4 microM). Again, diltiazem blocked the K(+)-evoked 45Ca2+ uptake (70 mM K+ for 1 min) only by 20%. In contrast, the N-P-Q-type Ca2+ channel blocker omega-conotoxin MVIIC depressed the K+ signal by 70%. In the presence of this toxin, diltiazem exhibited an additional small inhibitory effect, indicating that the compound was acting on L-type Ca2+ channels. 4. Whole-cell Ba2+ currents through Ca2+ channels in voltage-clamped chromaffin cells were inhibited by 3-10 microM diltiazem by 20-25%. The inhibition was readily reversed upon washout of the drug. 5. The whole-cell currents elicited by 100 microM DMPP (IDMPP) were inhibited in a concentration-dependent and reversible manner by diltiazem. Maximal effects were found at 10 microM, which reduced the peak IDMPP by 70%. The area of each curve represented by total current (QDMPP) was reduced more than the peak current. At 10 microM, the inhibition amounted to 80%; the IC50 for QDMPP inhibition was 0.73 microM, a figure close to the IC50 for 45Ca2+ uptake (0.4 microM) and [3H]-noradrenaline release (1.3 microM). The blocking effects of diltiazem developed very quickly and did not exhibit use-dependence; thus the drug blocked the channel in its closed state. The blocking effects of 1 microM diltiazem on IDMPP were similar at different holding potentials (inhibition by around 30% at -100, -80 or -50 mV). Diltiazem did not affect the current flow through voltage-dependent Na+ channels. 6. These data are compatible with the idea that diltiazem has little effect on Ca2+ entry through voltage-dependent Ca2+ channels in bovine chromaffin cells. Neither, does diltiazem affect INa. Rather, diltiazem acts directly on the neuronal nicotinic receptor ion channel and blocks ion fluxes, cell depolarization and the subsequent Ca2+ entry and catecholamine release. This novel effect of diltiazem might have clinical relevance since it might reduce the sympathoadrenal drive to the heart and blood vessels, thus contributing to the well established antihypertensive and cardioprotective effects of the drug.  相似文献   

19.
Ca2+ ions are thought to play important roles in processes underlying neuronal plasticity such as synapse stabilization. We employed the Fura-2 technique on brainstem slices of neonatal rats to measure changes in intracellular Ca2+ ([Ca2+]i) in neurons of the lateral superior olive (LSO) in order to analyse whether these cells have functional Ca2+ channels when synaptic maturation takes place. Rises in intracellular Ca2+ could be induced by KCl-evoked depolarizations or by glutamate, but not by glycine or GABA. These results show that Ca2+ channels are present in developing LSO neurones and that many of them, if not all, belong to the voltage-sensitive type. We speculate that these channels play a role during ontogeny by mediating Ca(2+)-dependent mechanisms of synapse stabilization.  相似文献   

20.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9-anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号