首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-infrared (NIR) quantum cutting luminescent materials Li2TeO4 doped with Pr3+ and Yb3+ were synthesized by solid-state reaction method. The dependence of Yb3+ doping concentration on the visible- and NIR-emissions, decay lifetime, and quantum efficiencies of the phosphors are investigated. Quantum cutting down-conversion involving 647 nm red emission and 960-1050 nm broadband near-infrared emission for each 487 nm blue photon absorbed is realized successfully in the resulting phosphors, of which the process of near-infrared quantum cutting could be expressed as 3P0(Pr3+) → 2F5/2(Yb3+) + 2F5/2(Yb3+). The maximum quantum cutting efficiency approaches up to 166.4% in Li2TeO4: 0.3 mol%Pr3+, 1.8 mol%Yb3+ sample corresponding to the 66.4% value of energy transfer efficiency.  相似文献   

2.
A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(3P0 → 1G4), Yb3+(2F7/2 → 2F5/2) energy transfer step takes place, significant Pr3+1G4 emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion.  相似文献   

3.
KY3F10:Yb3+/Tm3+/Er3+ upconversion nanocrystals are synthesized via a simple hydrothermal procedure. The nanocrystals emit the near equal energy white light with high brightness and favorable color balance when excited using a 980 nm continuous wave diode laser. The research of upconversion mechanism indicates that in addition to the energy transfer processes from Yb3+ to Tm3+ and Er3+, respectively, there exists a new process 1G4 (Tm3+) + 4I11/2 (Er3+) → 3H4 (Tm3+) + 4S3/2 (Er3+).  相似文献   

4.
Bi3+,Nd3+ co-doped Gd2O3 were prepared by solid state reaction and the optical properties were investigated. The results show that the near-infrared emission of Nd3+ ions is significantly enhanced by the introducing of Bi3+ in co-doped samples. An efficient energy transfer from Bi3+ to Nd3+ corresponds to the near-infrared emission enhancement. The energy transfer efficiency reaches 64.1% for the sample with the strongest near-infrared emission, which has the optimized doping concentrations of 0.5% for Bi3+ and 2% for Nd3+. The interesting optical properties make Bi3+,Nd3+ co-doped Gd2O3 promising as the luminescent down-conversion layers in front of c-Si solar cells to enhance the performance of the solar cells.  相似文献   

5.
YVO4 single crystals doped with Ce3+, Er3+ and Yb3+ ions were grown by the Czochralsski technology. The luminescence properties of Er3+/Yb3+:YVO4 single crystals with different concentration of Ce3+ were studied, and the energy transfer mechanism between Er3+, Yb3+ and Ce3+ was discussed based on their energy level properties. The branching ratios of the 4I11/2 → 4I13/2 transition in different samples were calculated. The results indicate that codopants of Ce3+ greatly enhance the population rate of the 4I13/2 level due to the fast resonant energy transfer between Er3+ and Ce3+, i.e., 4I11/2(Er3+) + 2F7/2(Ce3+) → 4I13/2(Er3+) + 2F5/2(Ce3+).  相似文献   

6.
An investigation of spectroscopic properties of (SrTiO3-TiO2):Pr3+ eutectic and, for comparison, of bulk SrTiO3:Pr3+ and TiO2:Pr3+crystals is presented. Luminescence spectra have been measured under both 450 nm and 350 nm excitation wavelength. For UV excitation they are characterized by a dominant red luminescence corresponding to transition from the 1D2 level of Pr3+ ions. The mechanism responsible for quenching of blue (from 3P0 state) and intensification of red luminescence is proposed to be thermally-induced radiationless relaxation involving a low-lying Pr3+-Ti4+ intervalence charge transfer state. Measured decay constants of 1D2 excited state of Pr3+ are compared with values obtained for other praseodymium doped titanate hosts.  相似文献   

7.
We demonstrate the upconversion-photoluminescence spectra of Er3+, Yb3+ and Li+ ions doped ZrO2 nanocrystals. By introducing Li+, emission intensities of single green and single red band increase by a factor of 1.93 and 1.65, respectively. Powder X-ray diffraction data and decreased slopes of the excitation power dependences on upconverted emission intensities give evidences that Li+ ions can tailor the local structure of host lattice and improve energy transfer processes from Yb3+ to Er3+, respectively.  相似文献   

8.
Different crystal structure of TeO2 nanoparticles were used as the host materials to prepare the Er3+/Yb3+ ions co-doped upconversion luminescent materials. The TeO2 nanoparticles mainly kept the original morphology and phase after having been co-doped the Er3+/Yb3+ ions. All the as-prepared TeO2:Er3+/Yb3+ nanoparticles showed the green emissions (525 nm, 545 nm) and red emission (667 nm) under 980 nm excitation. The green emissions at 525 nm, 545 nm and red emission at 667 nm were attributed to the 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions, respectively. For the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, three-photon process involved in the green (2H11/2 → 4I15/2) emission, while two-photon process involved in the green (4S3/24I15/2) and red (4F9/2 → 4I15/2) emissions. For the β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles, two-photon process involved in the green (2H11/2 → 4I15/2), green (4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) emissions. It suggested that the crystal structure of TeO2 nanoparticles had an effect on transition processes of the Er3+/Yb3+ ions. The emission intensities of the α-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles and β-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles were much stronger than those of the (α + β)-TeO2:Er3+/Yb3+ (3/10 mol%) nanoparticles.  相似文献   

9.
Triply-doped single crystals KGd(WO4)2:Er3+/Yb3+/Tm3+, KGd(WO4)2:Tb3+/Yb3+/Tm3+ and KGd(WO4)2:Pr3+/Yb3+/Tm3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host’s conduction band and other possible defects of the KGd(WO4)2 crystal lattice in the up-conversion processes.  相似文献   

10.
Extended X-ray absorption fine structure measurements have been performed on Yb3+ in silicate, borate, phosphate, and gallate glasses in order to investigate the local structures surrounding Yb3+. The local structures of Yb3+ ions in silicate, borate, and phosphate glasses were similar to those of Er3+ ions. Yb3+ ions do not occupy the network structural sites, but sit around the terminal region of the network or the region between the networks in these glasses. On the other hand, Yb3+ ions substitute the Ga3+ sites in complex anion structural units of the K2O-Ga2O3-Nb2O5 glasses. We classified the local structures surrounding Yb3+ ions in oxide glasses into two types: the former and the latter are interstitial and substitutive types, respectively. The relationship between the spontaneous emission probability for 2F5/22F7/2 transition of Yb3+ and the local structure of Yb3+ in oxide glasses are discussed in terms of these two types.  相似文献   

11.
Lanthanide-doped uniform pure cubic phase Y2O3 hollow microspheres have been successfully synthesized via a facile, high yield urea-based coprecipitation route with assistant of carbon spheres templates. The diameter and shell thickness of the microspheres can be manipulated by adjusting carbon sphere templates. Under a 980 nm excitation, Yb3+/Er3+, Er3+, Yb3+/Tm3+-doped Y2O3 hollow microspheres emit bright upconversion red, green, blue light with high purity, respectively, while Eu3+, Eu3+/Tb3+-doped Y2O3 hollow microspheres exhibit intense downconversion red light under the excitation of 254 nm ultraviolet light. Especially, the 610 nm emission intensity of Eu3+ in the Eu3+/Tb3+-codoped Y2O3 hollow microspheres is almost 5 times of that in the Y2O3:Eu3+ hollow microspheres indicating the occurring of the energy transfer from Tb3+ to Eu3+ ions.  相似文献   

12.
Lead borate glass samples doped with the tripositive lanthanide ions Pr3+ and Yb3+ were synthesized by the conventional melting-quenching method. The luminescence properties and energy transfer process from Pr3+ to Yb3+ were investigated. Upon ultraviolet excitation, the room temperature luminescence decay curve of a sample containing only a low concentration of Pr3+ exhibited monoexponential decay from 1D2 with the lifetime 37 μs, without emission from 3P0. The room temperature Pr3+ emission intensity decreased with the increase of Yb3+ mole ratio in the glass. Under the excitation of 454.5 nm at 10 K, a broad red emission band centered at 605 nm, and an NIR emission band at 995 nm were observed in the co-doped lead borate glass, originating from Pr3+ and Yb3+ ions, respectively. The decay curves of the 1D2 emission from Pr3+ with addition of Yb3+ in lead borate glass show non-monoexponential character, and are best described by a stretched exponential function. The average 1D2 decay time decreases considerably with the addition of Yb3+ in the glass. Decay curve fitting using a modified Inokuti-Hirayama expression indicates dipole-dipole energy transfer from Pr3+ to Yb3+, which is consistent with the expected cross-relaxation scheme. There is a good agreement of the estimated overall energy transfer efficiency obtained from the integrals under the normalized decay curves, or from the lifetimes fitted by the stretched exponential function, or from the average decay times.  相似文献   

13.
We report on spectral modification from visible to near-infrared (NIR) in Pr3+ and Yb3+ codoped oxyfluoride glass for c-Si solar cell. The excitation and emission spectra indicate the energy transfer from Pr3+ to Yb3+. The theoretical quantum efficiency is calculated based on the fluorescent lifetime and has reached more than 150%. However, the external quantum efficiency (EQE) of the Pr3+ and Yb3+ codoped glass covered on silicon solar cell is decreased compared to that of the host glass. The reasons of the negative effect of spectral modification on EQE are discussed and analyzed.  相似文献   

14.
In Yb:CaF2, the coordination of Yb3+ in the CaF2 lattice determines the spectroscopic properties that make Yb:CaF2 a good candidate for high power laser applications. In this work, we measure the optical absorption, emission, and fluorescence lifetime of 0.1, 1, 5, and 10 at% Yb:CaF2 ceramics to determine whether Yb3+ substitutes as hexamer clusters giving rise to the tenability and long fluorescent lifetime observed in Yb:CaF2 single crystals. Absorption and emission spectra show that the concentration of Yb3+ present in hexamer clusters, as opposed to isolated ions, increases with increasing Yb3+ content. Fluorescence lifetime also increases with increasing Yb3+ content. Laser testing on a 1 at% Yb:CaF2 transparent ceramic demonstrates that these materials are viable laser gain media.  相似文献   

15.
Yb3+/Tm3+/Ho3+ tri-doped Gd2Mo3O9 phosphors were synthesized by the high-temperature solid-state method. Under 980 nm near-infrared excitation, the white-light emission can be observed, which is consists of the blue, green, and red UC emissions. The green and red emission at 547 nm and 660 nm originated from the transition of Ho3+ (5S2, 5F4 → 5I8 and 5F5 → 5I8) and the blue emission at 475 nm attributed to the transition of Tm3+ (5G4 → 5H6). In this experiment, we selected the optimum concentration ratio of the three rare earths for the bright white emission. The Commission internationale de L’Eclairage (CIE) coordinates for the samples were calculated, and chromaticity coordinates were very close to white light regions. We find that the calculated CIE color coordinates of the Yb3+/Tm3+/Ho3+ tri-doped Gd2Mo3O9 phosphors changed with the incident pump power from 400 mW/cm2 to 1000 mW/cm2. The upconversion luminescence mechanism of the samples was discussed on its spectral. The white light may be proved to be a candidate material for applications in various fields.  相似文献   

16.
YLiF4 (YLF) single crystals undoped and Yb3+-doped with different concentrations were grown by the Czochralski technique under CF4 atmosphere. Detailed analysis of Yb3+-doped YLF spectroscopy were made to contribute to the determination of energy levels in this host. We are dealing with temperature and concentration dependences of both π and σ polarizations of the infrared (IR) absorption and emission spectra. Raman spectra were also used to give an attempt of interpretation of electronic and vibronic levels. The radiative energy transfer (self-trapping) and strong phonon–electron coupling make the assignment of Yb3+ energy levels difficult. Evaluation of the laser potentiality of this fluoride host is also presented.  相似文献   

17.
Bright white upconversion luminescence from Er3+-Tm3+-Yb3+ doped CaSnO3 powders is obtained under the diode laser excitation of 980 nm. It is composed of three primary colors of red, green and blue emissions, which originate from the transitions of 4F9/2 → 4I15/2, (2H11/2, 4S3/2) → 4I15/2 of Er3+ ions and 1G4 → 3H6 of Tm3+ ions, respectively. The efficient upconversion emission is attributed to the energy transfer between Yb3+ and Er3+ or Tm3+ions. Moreover, it is observed that Tm3+ acts as the quenching center for the green upconversion luminescence from Er3+ ions, and the sensitizer for the red and blue luminescence when the Tm3+ doping content is less than 0.3 mol%. This is interpreted in terms of the efficient energy transfer between Tm3+ and Er3+ ions. The calculated color coordinates fall within the white region in the standard 1931 CIE chromaticity diagram, indicating the potential applications of Er3+-Tm3+-Yb3+ doped CaSnO3 in the field of displaying and lasers, etc.  相似文献   

18.
Aluminium oxide (Al2O3) films doped with CeCl3, TbCl3 and MnCl2 were deposited at 300 °C with the ultrasonic spray pyrolysis technique. The films were analysed using the X-ray diffraction technique and they exhibited a very broad band without any indication of crystallinity, typical of amorphous materials. Sensitization of Tb3+ and Mn2+ ions by Ce3+ ions gives rise to blue, green and red simultaneous emission when the film activated by such ions is excited with UV radiation. The overall efficiency of such energy transfer results to be about 85% upon excitation at 312 nm. Energy transfer from Ce3+ to Tb3+ ions through an electric dipole-quadrupole interaction mechanism appears to be more probable than the electric dipole-dipole one. A strong white light emission for the Al2O3:Ce3+(1.3 at.%):Tb3+(0.2 at.%):Mn2+(0.3 at.%) film under UV excitation is observed. The high efficiency of energy transfer from Ce3+ to Tb3+ and Mn2+ ions, resulting in cold white light emission (x = 0.30 and y = 0.32 chromaticity coordinates) makes the Ce3+, Tb3+ and Mn2+ triply doped Al2O3 film an interesting material for the design of efficient UV pumped phosphors for white light generation.  相似文献   

19.
The use of Yb3+ as a sensitizer for Er3+ doped laser materials is a common technique because of the high Yb3+ absorption cross sections. Energy transfer processes from Yb3+ to Er3+ in Sc2O3 are studied by two different methods. Transfer parameters describing the interactions between Er3+ and Yb3+ ions are obtained on the one hand from the ratio of emitted photons around 1.55 μm by Er3+ ions and around 1 μm by Yb3+ ions at cw excitation of Yb3+, on the other hand by lifetime measurements of Yb3+ ions in the codoped samples. Laser experiments are performed to study the suitability of Er3+,Yb3+:Sc2O3 as a laser material. Comparisons with energy transfer in Er3+,Yb3+:glass are made.  相似文献   

20.
The near-infrared (NIR) quantum cutting (QC) CaMoO4:Yb3+ phosphors co-doped with Li+ ions were synthesized by the sol–gel methods. The dependence of the structure, morphology, photoluminescence (PL) and downconversion (DC) quantum efficiency on the Li+ doping concentration have been investigated in details. It was demonstrated that the CaMoO4:Yb3+ phosphors with appropriate concentration of the Li+ ions show improved crystallinity and remarkable increase of the NIR emission from the Yb3+ ions, if compared with the Li+-free samples. The enhancement of the NIR emission and DC quantum efficiency was suggested to be a consequence of the improved crystallinity and stronger absorption of the host due to the [MoO4] tetrahedra distortion induced by the Li+ ions. Cooperative energy transfer (CET) from the host to the Yb3+ ions is discussed as a possible mechanism for the NIR emission enhancement. Excellent luminescence properties of the Li+ doped CaMoO4:Yb3+ phosphor demonstrate its potential application as a better QC layer to increase the energy conversion efficiency of the Si-based solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号