首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
以CaCO3、H2SiO3、TiO2、Nd2O3和Al2O3为原料,通过高温固相反应合成榍石固溶体,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等分析手段,研究钕在榍石固溶体中的固溶情况。结果表明,引入Al3+作为电价补偿时,Nd3+能较好地固溶在Ca1-yNdyTi1-yAlySiO5固溶体中,其固溶量为12.3%~13.56%;不引入电价补偿时,Nd较难在Ca缺位的Ca1-3/2yNdyTiSiO5固溶体中固溶,其固溶量约为3.5%;合成掺Nd榍石固溶体的较佳温度为1270℃。  相似文献   

2.
氧化硼对铁磷酸盐玻璃陶瓷固化体的影响   总被引:1,自引:0,他引:1  
研究了不同B2O3掺量对铁磷酸盐玻璃陶瓷高放废物固化体结构和性能的影响。应用溶出速率法(DR)对固化体进行了化学稳定性测试,使用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)方法研究了样品的结构。研究结果表明:玻璃陶瓷固化体的主晶相为独居石;B2O3的引入对玻璃陶瓷固化体的化学稳定性影响较大,以10%(摩尔分数)的B2O3代替Fe2O3制得的固化体化学稳定性最佳,其28d的质量浸出率约为7.81×10-9g•cm-2•min-1;试样中存在大量正磷酸基团[PO43-和少量焦磷酸基团[P2O74-,无偏磷酸基团[PO3-存在,固化体中的B主要以[BO4]四面体基团形式存在。  相似文献   

3.
45Ca同位素示踪技术研究慈竹不同提取物对大鼠心脏和动脉Ca2+内流和外溢的影响。结果表明,慈竹竹叶、竹枝和竹竿的碱提取物具有显著的钙拮抗作用,既能阻滞Ca2+内流,又能促进已流入细胞中的Ca2+外溢,且具有剂量效应关系。初步研究表明,慈竹提取物的钙拮抗作用与黄酮及多糖含量无显著的对应关系。  相似文献   

4.
以天然锆英石、模拟放射性焚烧灰、CaCO3、TiO2、UO2为原料,采用高温固相反应,对人造岩石固化掺铀模拟放射性焚烧灰进行研究。借助XRD、SEM、抗浸出性能测试等分析测试方法,研究固化体的性能。结果表明:在空气气氛下烧结,固化体的晶相为CaZrTi2O7[Ca(Zr,U)Ti2O7]、CaTiSiO5、CaTiO3和CaUO4,一部分U固溶于Ca(Zr,U)Ti2O7中;较多CaZrTi2O7的生成有利于Ca(Zr,U)Ti2O7固溶更多的U;模拟放射性焚烧灰掺量为60%、UO2含量为6.88%的人造岩石固化体,1~35d铀的归一化浸出率为0.17~2.81μg/(cm2•d),42~192d铀的归一化浸出率为0.09~0.13μg/(cm2•d)。  相似文献   

5.
本工作试验研究以碳酸铵溶液作沉淀剂从硝酸铀酰和硝酸钆的混合溶液中共沉淀AUGdC的方法。试验结果表明:控制铀浓度为300~400g/L、饱和碳酸铵溶液与硝酸铀酰溶液体积比为2.0~2.4等主要工艺参数,可制备出还原、压制和烧结性能良好的AUGdC粉末;UO2-Gd2O3芯块烧结密度达理论密度的96%以上,钆铀分布均匀,形成UO2-Gd2O3固溶体,平均晶粒尺寸在18μm以上。  相似文献   

6.
钕在钙钛锆石和榍石组合矿物中的固溶机制   总被引:1,自引:0,他引:1  
以ZrSi O4、CaCO3、Ti O2、Al2O3、Nd2O3为原料,引入Al3+作价态补偿,通过固相反应制备包容模拟三价锕系核素Nd的钙钛锆石(CaZrTi2O7)和榍石(CaTiSi O5)组合矿物固化体。利用X射线衍射(XRD)、扫描电镜/能谱仪(SEM/EDS)研究其矿相组成、微观结构和元素分布,探讨Nd在钙钛锆石和榍石组合矿物固化体中的固溶机制。研究表明:钙钛锆石和榍石组合矿物固化体较佳的合成条件是在1 230℃条件下保温30 min,较佳配方的摩尔比为n(Ca1-x/2-y/4Nd(x+y)/2Zr1-y/4Alx/2Ti2-x/2O7)∶n(Ca1-xNdxAlxTi1-xSi O5)=[4/(4-y)]∶1;Nd3+能够进入钙钛锆石和榍石晶格,榍石能够固溶Zr4+、Al3+、Nd3+,Zr4+和Nd3+取代Ca2+位,Al3+占据Ti4+位,钙钛锆石能够固溶Al3+、Nd3+,Nd3+进入Ca2+位和Zr4+位,Al3+占据Ti4+位。  相似文献   

7.
以Pt-Ti(镀铂钛)为阳极,Ti为阴极,对HNO3介质中的H2C2O4进行恒电流电解,考察HNO3介质中H2C2O4电解动力学特性及其影响因素,并初步探讨HNO3介质中H2C2O4的电解氧化机理。研究结果表明:电流密度控制在25~37mA/cm2、HNO3浓度为2~3mol/L、温度为30~40℃时,电解效果最佳;微量金属离子(Fe3+、MnO-4、Ag+)的存在对H2C2O4的电解起催化作用,能较大提高电解速率;电解氧化法破坏H2C2O4的效率高于KMnO4蒸煮法,在工业中有潜在的应用前景。  相似文献   

8.
离子交换色谱中硼同位素交换反应平衡常数的理论预测   总被引:1,自引:0,他引:1  
外部溶液相中B(OH)3与离子交换树脂相中B(OH)4-、B3O3(OH)52-、B3O3(OH)4-之间所发生的同位素交换反应的平衡常数K是离子交换色谱法分离硼同位素研究中的基本参数之一,但难以用实验手段精确测定。本研究利用密度泛函理论(DFT)在B3LYP/6—31G理论水平上计算了气态下B(OH)3、B(OH)4-等的振动频率,用计算得到的频率,基于Urey模型求得B(OH)3、B(OH)4-、B3O3(OH)52-、B3O3(OH)4-的简约配分函数比(RPFR),进而得到同位素交换反应平衡常数。结果表明,B(OH)3和B(OH)4-间的同位素效应显著,其平衡常数K在25 ℃时为1.025 7,B(OH)3与B3O3(OH)52-和B3O3(OH)4-反应的平衡常数较小,分别约为1.017 2和1.008 4。  相似文献   

9.
采用循环伏安法和线性扫描法对模拟草酸钚沉淀母液中草酸和钚的电化学行为进行研究。研究结果表明,HNO3介质中的H2C2O4在Pt电极上的氧化为不可逆反应。在模拟的草酸钚沉淀母液中,因Pu(Ⅳ)被C2O2-4络合而未出现Pu(Ⅲ)/Pu(Ⅳ)的氧化还原峰,H2C2O4的氧化峰则清晰可见,H2C2O4的氧化反应仍为不可逆过程。对模拟草酸钚沉淀母液进行恒电流电解,考察了模拟母液中Pu(Ⅳ)初始浓度对草酸电解速率的影响以及电解过程中Pu价态的变化。结果表明,钚浓度为0.002~0.1g/L时,对H2C2O4的电解速率影响不大。恒电流密度下电解可将草酸钚沉淀母液中草酸的浓度破坏到0.001mol/L以下,可满足工艺要求。  相似文献   

10.
合成了含异腈基团的多肽偶联物(CNRGD),并用[99Tcm(CO)3(H2O)3+标记,得到具有与整合素αvβ3受体多结合位点的99Tcm(CO)3-CNRGD,并对其进行了体内外生物学评价。结果表明,在优化的标记条件下,99Tcm(CO)3-CNRGD的标记率达到77%,纯化后,标记物放射化学纯度大于96%。体外稳定性实验显示其具有很高的稳定性;脂水分配系数显示其具有较好的脂溶性。正常小鼠体内分布显示,99Tcm(CO)3-CNRGD在血液中清除较快,主要通过肝肾代谢。荷MCF-7人乳腺癌裸鼠体内分布显示,注射1、4h后,标记物在肿瘤部位的摄取值达(2.38±0.37)%ID/g和(1.57±0.21)%ID/g,瘤/血比分别达0.71±0.09、1.15±0.15,表明该标记物在肿瘤细胞中有一定的摄取和较长的滞留时间。  相似文献   

11.
铈在榍石固溶体中的固溶量   总被引:1,自引:0,他引:1  
以CaCO3、SiO2、TiO2、Ce2C8O12·10H2O和Al2O3为原料,通过高温固相反应合成榍石固溶体,借助X射线衍射(XRD)、背散射二次电子像(BSE)、能谱(EDS)等分析手段,研究铈在榍石固溶体中的固溶情况。研究结果表明,引入Al3+作为电价补偿时,Ce4+固溶在Ca1-xCexTi1-2xAl2xSiO5固溶体中,其最大固溶量为12.61%;不引入电价补偿时,Ce4+固溶在Ca1-2xCexTiSiO5固溶体中,其最大固溶量为10.98%;合成掺Ce榍石固溶体的较佳温度为1260℃。  相似文献   

12.
掺钕钙钛锆石、榍石组合矿物固化体的浸出性能   总被引:1,自引:0,他引:1  
以硅酸锆(ZrSiO4)、碳酸钙(CaCO3)、二氧化钛(TiO2)、氧化铝(Al2O3)和氧化钕(Nd2O3)为原料,采用固相反应工艺,制备掺钕钙钛锆石、榍石组合矿物固化体,借助X射线衍射(XRD)、背散射二次电子像(BSE)、荧光光谱(FS)、能谱(EDS)等分析手段,研究掺钕钙钛锆石、榍石组合矿物固化体的化学稳定性。结果表明,钙钛锆石、榍石的组合矿物能很好地固溶Nd,固化体具有良好的化学稳定性;在90℃,第42d,CZ15-1260、CZA15-1260、CA15-1260固化体样品的平均归一化浸出率分别为1.82×10-4、1.38×10-4、1.48×10-4g·m-2·d-1;固化体的较佳烧结温度为1260℃。  相似文献   

13.
土壤腐殖酸的提取及其对U(Ⅵ)的吸附   总被引:4,自引:1,他引:4  
用稀碱法从拟作为核废物填埋场的土壤中提取腐殖酸并用元素分析和红外光谱进行表征。用此腐殖酸对U(Ⅵ)进行的吸附实验结果表明:当U(Ⅵ)初始总浓度为0.84×10-4mol/L、溶液pH为3时,5mg腐殖酸可从20mL溶液中吸附U(Ⅵ)80%以上;两相接触8h后达到动态平衡;水相U(Ⅵ)浓度与吸附量之间的关系符合Langmuir经验公式;在0~40℃范围内,温度对吸附有不大的正影响;Al3+、Ca2+、Nd3+、Eu3+、CO2-3、柠檬酸根离子、SO2-4和EDTA等能使该腐殖酸对U(Ⅵ)的吸附率显著降低,而K+、NO-3等对吸附则无明显影响。  相似文献   

14.
硼硅酸盐废物玻璃中硫形态的拉曼光谱   总被引:2,自引:2,他引:0  
为提高硫在玻璃中的包容量,需了解硫结合进硼硅酸盐玻璃中的结构,本研究利用拉曼光谱来定性分析硼硅酸盐玻璃中硫的结构。拉曼光谱分析结果表明,在硼硅酸盐玻璃中,硫以硫酸盐的形式存在,SO4四面体周围最近的原子是Na+、Ca2+或其它阳离子,阳离子类型取决于形成玻璃的网络调节剂类型,硫酸盐存在于玻璃网络空穴中,在硫酸根和玻璃网络间没有键合。研究提出了提高硫包容量的方法,即适当降低网络形成剂的浓度,使网络结构松散,增大空穴量,从而提高硫酸盐的溶解量。  相似文献   

15.
为研究锆英石对四价锕系核素的固化能力,利用Ce4+模拟四价锕系核素。以ZrO2、SiO2和CeO2粉体为原料设计了包容量为5%~20%(摩尔分数)的锆英石固化体配方,在1500℃下保温22h进行固化体的制备。利用X射线衍射仪、扫描电子显微镜、红外光谱仪和激光拉曼探针对所制备固化体的物相、结构及微观形貌进行了分析。研究结果表明:在固化体中虽加入了5%~20%的CeO2,但主物相仍以锆英石物相为主,且均具有较高的结晶度,随着CeO2添加量的增加,固化体的无序程度略显增强。  相似文献   

16.
水泥固化体中Cs+浸出行为研究   总被引:1,自引:1,他引:0  
研究了25、40、70、90℃下碱矿渣 黏土复合胶凝材料(AASCM)和普通硅酸盐水泥(OPC)固化体中Cs+的浸出行为,并对浸出机理进行了探讨。结果表明:在25、40、70、90℃下,AASCM固化体和OPC固化体浸出行为不同,OPC固化体中Cs+的累积浸出分数在4个温度下趋于同一数值,而AASCM固化体中Cs+的累积浸出分数则随温度升高而增大。AASCM固化体中Cs+的存在状态为溶解态、吸附态及固溶态并存,而OPC固化体中则主要为溶解态和固溶态。AASCM固化体中处于吸附态和固溶态的Cs+接近90%,处于溶解态的约为10%;而OPC固化体中处于固溶态的约为40%,处于溶解态的约为60%。  相似文献   

17.
采用XRD、FTIR和酸碱滴定等手段对ZSM-5分子筛性质进行研究。采用静态批实验方法研究pH值、离子强度、固液比、平衡时间和Co2+浓度等因素对Co2+在ZSM-5分子筛表面上吸附的影响。结果表明,ZSM-5分子筛对Co2+具有较好的吸附能力和吸附容量;在低pH值下ZSM-5分子筛表面吸附位是以XH、YOH、YO-、YOH2+和XNa形态为主;而在高pH值条件下以YO-和XNa两种形态为主。Co2+在ZSM-5分子筛上的吸附符合准二级动力学;吸附作用受离子强度和pH值影响比较明显。在低pH值下,Co2+主要与ZSM-5分子筛表面发生离子交换作用(X2Co);在高pH值下以表面络合吸附为主(主要形成YOHCo2+和YOCo+两种形态)。  相似文献   

18.
水泥固化Cs、U(Ⅵ)的浸出模型研究   总被引:1,自引:1,他引:0  
采用碱矿渣-粘土复合胶凝材料(AASCM)和普通硅酸盐水泥(OPC)固化模拟放射性泥浆,对固化体中Cs+、U(Ⅵ)的浸出性能进行了研究。根据Fick第二定律建立并优化了预测核素浸出行为的二维衰变浸出模型。通过MATLAB软件编程计算,以非恒定表观扩散系数的二维衰变模型对Cs+、U(Ⅵ)的浸出行为进行了预测。结果表明:AASCM固化Cs+、U(Ⅵ)的能力大于OPC,浸出28d后,AASCM中Cs+、U(Ⅵ)的累积浸出分数分别低于OPC的1/5和1/2;Cs+、U(Ⅵ)浸出的表观扩散系数呈衰减趋势,当考虑表观扩散系数衰减时,二维衰变浸出模型对OPC固化Cs+、U(Ⅵ)及AASCM固化U(Ⅵ)的浸出行为预测较好,但对离子交换吸附作用较强的AASCM固化体中Cs+浸出行为预测较差。  相似文献   

19.
为了解在惰气环境Pu(OH)4(am)与碳酸盐溶液中HCO-3,CO2-3的配位行为,考察了放置时间对Pu总浓度的影响;同时也考察了pH值、碳酸根总浓度变化对碳酸盐溶液中Pu的主要存在形态及溶解总浓度的影响。实验结果表明,HCO-3离子与Pu(OH)4(am)生成[Pu(OH)4(HCO3)2]2-(lg K=-2.61±0.18, lgβ=54.25±0.18)或[Pu(OH)2(CO3)2]2-(lgK=-2.61±0.18, lgβ=46.91±0.18);CO2-3离子与Pu(OH)4(am)生成[Pu(OH)4(CO3)2]4-(lgK=-3.52±0.11, lgβ=53.33±0.11)。可能的配位反应方程式为: Pu(OH)4(am)+2HCO-3 = [Pu(OH)4(HCO3)2]2-, Pu(OH)4(am)+2HCO-3 =[Pu(OH)2(CO3)2]2-+2H2O, Pu(OH)4(am)+2CO2-3=[Pu(OH)4(CO3)2]4-。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号