首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
燕麦β-葡聚糖是来源于燕麦糊粉、亚糊粉和胚乳组织细胞壁中的无分支线性多糖,属于水溶性纤维,是燕麦中重要的活性成分。燕麦β-葡聚糖作为一种天然的食品添加剂,在食品和医药工业得到广泛的应用。本文概述燕麦β-葡聚糖抗糖尿病、降低胆固醇、增强免疫、抗癌等生理功能及其在胃、肠道中发挥的积极作用,并综述燕麦β-葡聚糖近几年在肉类、烘焙食品和饮料等食品行业中的应用。对燕麦β-葡聚糖目前研究存在的问题和解决方法进行展望,以期为燕麦β-葡聚糖进一步开发和应用提供理论支持。  相似文献   

2.
研究表明:燕麦的营养价值和保健功效主要归功于籽粒中的可溶性膳食纤维——β-葡聚糖。本文详细阐述了燕麦β-葡聚糖的特性、功能、影响因素以及在食品工业中的应用,并对燕麦β-葡聚糖的发展现状和应用前景进行分析。  相似文献   

3.
燕麦全粉中β-葡聚糖提取工艺优化   总被引:6,自引:2,他引:6  
为充分提取燕麦籽粒中的β-葡聚糖,深入和全面的评价其结构与功能性质的关系,以燕麦全粉为原料,研究在较低提取温度下β-葡聚糖的最佳提取工艺,为筛选出生理功能更为突出的β-葡聚糖及燕麦品种提供试验依据.在单因素(提取温度、pH值、时间、料液比)试验的基础上,设计四因素五水平的二次正交旋转组合试验,利用响应面分析确定各因素、水平对β-葡聚糖提取率的影响.经分析和验证,得到燕麦全粉中β-葡聚糖的最佳提取工艺条件为:温度40 ℃、pH 12.5、时间3 h、料液比1:16(W:V);在此条件下,燕麦全粉中β-葡聚糖提取率达到91.83%.  相似文献   

4.
燕麦β-葡聚糖在食品工业中的应用   总被引:2,自引:0,他引:2  
综述燕麦β-葡聚糖在食品工业中的应用.介绍燕麦β-葡聚糖的结构和功能特性,燕麦β-葡聚糖作为脂肪替代品以及其在烘焙食品、肉制品和乳制品等方面的应用,并对其应用前景进行了展望.  相似文献   

5.
近年来,β-葡聚糖因其显著的生理学活性和健康特性,受到了各相关领域的广泛研究。β-葡聚糖存在于青稞、大麦、燕麦等天然植物及酵母、细菌、真菌等微生物中,是一种高营养价值的可再生多糖。因其来源广泛而具有的不同物理性质,也影响着β-葡聚糖在多种生物活性功能领域的开发应用。从不同来源的β-葡聚糖及构效关系入手,归纳了其在消化系统、神经系统、免疫系统等方面的研究现状,发现β-葡聚糖具有调控糖脂代谢紊乱、提高机体免疫力、改善脑功能、调节肠道菌群等特殊生理活性,可作为膳食补充剂与功能因子干预调节机体健康,在保健品研发等领域具有广阔的应用价值和前景,为β-葡聚糖的进一步开发利用提供理论参考和科学依据。  相似文献   

6.
综述了燕麦β-葡聚糖的结构性质、保健功能及其在食品工业中的应用,同时也对其应用前景进行了展望.使得人们加深对燕麦β-葡聚糖的认识,以期推动燕麦种植业的发展和增加其附加值.  相似文献   

7.
为了研究燕麦和β-葡聚糖功能特性的差异,以燕麦全粉和β-葡聚糖为原料,设立对照组、燕麦全粉组和β-葡聚糖组,进行燕麦全粉和β-葡聚糖对大鼠的饮食、饮水、排便量、体重、血糖、血脂、胰岛素和游离脂肪酸等指标影响的比较试验研究。结果表明:燕麦全粉可以显著增加大鼠的排便量以及粪便的含水量(P0.05),全粉组大鼠的摄食量、饮水量、体重都高于对照组,但差异不显著。β-葡聚糖组大鼠饮食、饮水量、体重和体重增加量都显著低于对照组和燕麦全粉组(P0.01)。燕麦全粉对大鼠总胆固醇的降低效果优于β-葡聚糖(P0.05);β-葡聚糖组大鼠空腹胰岛素水平显著低于燕麦全粉组和对照组(P0.05),血清中游离脂肪酸水平显著高于燕麦全粉组和对照组(P0.01)。燕麦全粉和β-葡聚糖都可以改善大鼠血清中甘油三酯、低密度脂蛋白和血糖水平,且两组之间差异不显著。  相似文献   

8.
为研究燕麦β-葡聚糖对山药淀粉的影响,采用快速粘度分析仪制备山药淀粉与燕麦β-葡聚糖共混体系,测定了共混体系的糊化性质、热特性、流变性和消化性能等。糊化特性分析表明,燕麦β-葡聚糖能够降低山药淀粉的黏度、回生值,抑制山药淀粉的短期回生。热特性结果表明,燕麦β-葡聚糖的加入使共混体系的糊化焓ΔH显著降低(P<0.05),最低值为7.34 J/g。红外谱图分析表明,山药淀粉与燕麦β-葡聚糖之间未发生共价结合,主要通过氢键作用。质构特性分析表明,燕麦β-葡聚糖的添加使共混体系凝胶结构变弱。静态流变学特性分析表明,燕麦β-葡聚糖的加入使共混体系的表观黏度降低;动态流变学特性分析表明,燕麦β-葡聚糖可显著降低山药淀粉的黏弹性。X射线衍射结果表明,凝胶作用改变了晶体类型,且相对结晶度从38.40%降至16.30%。此外,燕麦β-葡聚糖的加入,降低了共混体系的消化性,提高了抗性淀粉含量,最高值为49.24%。本研究可为开发燕麦β-葡聚糖/淀粉基食品提供理论依据。  相似文献   

9.
加工对燕麦β-葡聚糖的影响研究进展   总被引:1,自引:0,他引:1  
燕麦已被公认为具有保健功能的营养食品,不同的加工方法对燕麦的β-葡聚糖可产生不同程度的影响,从而影响其生物学功能。燕麦的加工方法主要包括热处理、挤压、均质、发酵等。热处理主要导致高分子量的β-葡聚糖发生降解;挤压和发酵可能会造成β-葡聚糖的分子结构和理化性质的改变;均质会使β-葡聚糖的流变学行为发生改变。总之,加工对燕麦的结构与功能的影响值得进一步关注。  相似文献   

10.
燕麦β-葡聚糖在发酵酸奶中的应用   总被引:1,自引:0,他引:1  
燕麦β-葡聚糖是一种黏性多糖,是燕麦麸皮胚乳细胞壁中的天然提取物。本文将燕麦β-葡聚糖应用于发酵酸奶,通过实验确定最佳的添加方式为用水溶胀后添加,最佳添加量为0.3%~0.5%。同时研究两种含量的燕麦β-葡聚糖对酸奶体系的发酵过程、口感特性和货架期品质的影响。通过酶解法测定葡聚糖在酸奶体系中含量稳定,说明其不被发酵剂所利用。综合研究发现,燕麦β-葡聚糖应用于酸奶中可以使其口感细腻,风味饱满,品质稳定。  相似文献   

11.
几种不同来源β-葡聚糖的体外功能特性   总被引:3,自引:0,他引:3  
以青稞β-葡聚糖粗提物、燕麦β-葡聚糖粗提物、酵母β-葡聚糖粗提物这3种天然提取物为研究对象,以化学合成的聚葡萄糖为对照,进行了吸附油脂、胆固醇、胆盐、葡萄糖,抑制胰脂肪酶活性、胰淀粉酶活性及阳离子交换7种体外功能性实验。结果显示:每克青稞β-葡聚糖粗提物可以吸附6.28 g玉米油、20.49 mg胆固醇、18.91 mmol葡萄糖,其对胰脂肪酶活性的抑制能力为28.1%、对胰淀粉酶活性的抑制能力达92.9%,这几项数值均优于其他3个样品,说明青稞β-葡聚糖粗提物在降血脂、调节血糖方面具有综合优势;燕麦β-葡聚糖粗提物和酵母β-葡聚糖粗提物的胆盐吸附量基本相当,明显高于青稞β-葡聚糖粗提物;酵母β-葡聚糖粗提物的阳离子交换能力居4个样品之首;聚葡萄糖也具有以上7种体外功能特性,但未发现突出优势。  相似文献   

12.
近年来,β-葡聚糖因其显著的健康功效和良好的功能特性,被广泛应用到各类食品的生产中。β-葡聚糖存在于燕麦、大麦、青稞和小麦等多种谷物中,不同谷物源其含量、分布、结构、功能特性和生理活性有所不同,进而影响在食品加工中的应用。从制备方法、营养、理化性质、功能特性和健康功效等多方面阐述谷物β-葡聚糖及其多糖、脂质、蛋白复合物的食品相关研究现状,归纳谷物β-葡聚糖目前在食品应用中面临的问题,以期为谷物β-葡聚糖进一步的开发利用提供参考。  相似文献   

13.
燕麦β-葡聚糖的研究进展   总被引:2,自引:1,他引:1  
介绍了燕麦β-葡聚糖所具备的一些生理特性、结构及功能,如持水性、对胆固醇和胆汁酸等分子的螯合吸附作用、改善肠道茵群环境等,并阐述了燕麦β-葡聚糖在食品中的应用及对其发展的展望。  相似文献   

14.
燕麦β-葡聚糖生理功能研究进展   总被引:3,自引:4,他引:3  
综述燕麦β-葡聚糖在降血脂、调节血糖、促进肠道益生菌增值及预防结肠癌、免疫调节等方面的功能。  相似文献   

15.
以稳定性为评价指标研究了α-淀粉酶生产燕麦浊汁的酶解工艺,并用刚果红法探究了水溶性β-葡聚糖含量在饮料加工过程中的变化。结果表明,酶解的最佳工艺条件为:10%的燕麦溶液,温度55℃、p H6.4、酶用量为91.7U/100g溶液、时间180min,燕麦浊汁稳定性值为93.3%;燕麦原料中的水溶性β-葡聚糖含量为12.8mg/g,浸泡过程中会造成水溶性β-葡聚糖的流失,蒸煮、打浆能提高水溶性β-葡聚糖的含量,酶解、灭菌对水溶性β-葡聚糖含量没有明显影响。  相似文献   

16.
对国内外对于燕麦β-葡聚糖物化特性分析现状进行了总结,发现与其他来源的β-葡聚糖相比,燕麦β-葡聚糖具有更好的水溶性和皮肤渗透性以及较强的吸附小分子的能力,应用前景广阔。此外我们讨论了品种、生长环境、加工处理、提取工艺4方面因素对其提取效果的影响,旨在为燕麦β-葡聚糖的提取与进一步研究提供建议。  相似文献   

17.
以白燕2号燕麦籽粒为对照样品,研究不同加工方式制得的燕麦米、燕麦片、燕麦糊、燕麦粉和燕麦窝窝的营养品质差异。比较不同燕麦制品主要营养成分含量差异,及蛋白质和β-葡聚糖的分子量等分子结构变化。结果表明:五种燕麦制品中燕麦米和燕麦片的热量值、脂肪含量较低,且灰分、矿物质、氨基酸、淀粉、β-葡聚糖损失较少,营养品质高于其他制品,燕麦糊营养成分损失最大。热加工(三熟工艺、高温挤压)会破坏蛋白质结构,诱导其展开重新聚集,分子量增大;导致β-葡聚糖裂解,分子量减小,黏度降低。燕麦糊高温挤压膨化过程导致功能成分β-葡聚糖分子量显著降低,因此适当调整挤压等高温加工参数可以有效保留燕麦的功能特性。  相似文献   

18.
在碱法提取β-葡聚糖的过程中,酒精沉淀β-葡聚糖工艺中有大量果胶一同沉淀下来,降低了β-葡聚糖的纯度。实验采用添加果胶酶的方法除去果胶,以西藏青稞和燕麦为原料,经过碱法粗提β-葡聚糖,然后调节pH,加入果胶酶溶液,在一定温度下反应一段时间,反应液浓缩后经酒精沉淀,沉淀物即为较纯的β-葡聚糖。实验中研究了不同的pH、温度、酶加量以及反应时间对酶解β-葡聚糖中果胶的影响,确定了酶解果胶的最佳条件为pH3、温度为50℃、酶加量为120U/g、反应时间为5h。添加果胶酶使燕麦和青稞中β-葡聚糖的提取率分别从0.1%和0.2%提高到1.9%和2.2%。利用黏度法测得青稞中提取的β-葡聚糖分子量为1.8×104,燕麦中提取的β-葡聚糖分子量为2.1×104。  相似文献   

19.
本文以燕麦为原料,以β-葡聚糖、总多酚、蛋白质体外消化率(IVPD)、不溶及可溶膳食纤维含量为评价指标,探讨燕麦在发芽过程中淀粉、β-葡聚糖、总多酚及膳食纤维等营养物质的变化规律。结果表明从浸麦到发芽5d过程的不同状态中,随着时间的延长,燕麦蛋白质体外消化率、总多酚含量、可溶性膳食纤维都大幅度增加,而β-葡聚糖的含量和不溶性膳食纤维含量明显降低。当发芽时间达到5d时,总多酚含量增加30.46%,IVPD值增加138.6%,可溶性膳食纤维增加59.74%,而β-葡聚糖含量下降近80.38%,不溶性膳食纤维减少19.56%。说明燕麦从浸麦到发芽过程中,在一定程度上提高了燕麦的营养价值,但同时降低了β-葡聚糖和不溶性膳食纤维等相关功能特性,为燕麦的后续加工提供一定的基础。  相似文献   

20.
目的:研究燕麦β-葡聚糖的冻融提取方法.方法:采用热水浸提-冻融循环提取燕麦β-葡聚糖,研究内源酶活性、水浸提温度和时间、燕麦β-葡聚糖质量分数和冻融次数等因素对β-葡聚糖得率和纯度的影响规律.采用气相色谱、红外光谱和核磁共振等手段对纯化的β-葡聚糖进行结构表征.结果:不灭内源酶活,55℃提取2h,将提取液浓缩至β-葡聚糖质量分数为1%,冻融3次,燕麦β-葡聚糖的得率为1.5%,纯度92%.通过仪器分析的方法证实冻融法提取到的物质是β-葡聚糖.结论:采用冻融法,不必添加任何化学试剂和酶,仅凭借冻融这一物理过程即可得到较高纯度的燕麦β-葡聚糖.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号