首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
阎秋生  赵言  梁智镔  陈家学  潘继生 《表面技术》2021,50(9):322-332, 378
目的 获得超光滑表面且无毒性残留的医用钛合金.方法 采用半固着磨料的新型动态磁场集群磁流变抛光方法加工医用TC4钛合金,研究磨料种类、粒径、抛光时间、加工间隙和抛光盘转速等工艺参数,对医用钛合金表面形貌和表面粗糙度的影响规律,使用扫描电镜对抛光前后的医用钛合金表面进行成分分析.结果 医用TC4钛合金表面形貌受磨料形状和硬度的综合影响,Al2O3磨料相对SiC、SiO2和B4C磨料能获得更高质量的表面.随着Al2O3磨料粒径的增大,表面粗糙度先减小、后增大,5μm的Al2O3抛光效果最佳.加工间隙从0.8 mm增大到1.2 mm,表面粗糙度先减小、后增大,在1 mm时加工效果最优.抛光盘转速从15 r/min增大到35 r/min,表面粗糙度先减小、后增大,在25 r/min时加工效果最优.当使用粒径为5μm的Al2O3磨粒,在1 mm的工作间隙和25 r/min的抛光盘转速下抛光4 h时,医用钛合金表面粗糙度Ra从原始的110 nm降低到2.87 nm,表面粗糙度的下降率为97.39%.结论 应用动态磁场集群磁流变抛光方法加工医用钛合金,能够获得无异质成分残留的超光滑表面.  相似文献   

2.
基于芬顿反应的磁流变化学复合抛光加工原理,对单晶SiC基片进行磁流变化学复合抛光试验,研究工艺参数对其抛光效果的影响。结果表明:随着金刚石磨粒粒径的增大,材料去除率先增大后减小,而表面粗糙度先减小后增大;随着磨粒质量分数的增大,材料去除率增大,而表面粗糙度先减小后增大;当羰基铁粉质量分数增大时,材料去除率增大,而表面粗糙度呈先减小后增大的趋势;随着氧化剂质量分数增大,材料去除率先增大后减小,而表面粗糙度呈现先减小后增大的趋势;加工间隙对材料去除率的影响较大,加工间隙为1.0 mm时,加工表面质量较好;随着工件转速和抛光盘转速增大,材料去除率均先增大后减小,表面粗糙度均先减小后增大。获得的优化的工艺参数为:磨粒粒径,1.0μm;磨粒质量分数,5%;羰基铁粉质量分数,25%;过氧化氢质量分数,5%;加工间隙,1.0 mm;工件转速,500 r/min;抛光盘转速,20 r/min。采用优化的工艺参数对表面粗糙度约为40.00 nm的单晶SiC进行加工,获得表面粗糙度为0.10 nm以下的光滑表面。  相似文献   

3.
目的 针对钛合金结构件高质高效抛光需求,提出了磁流变电解复合抛光新方法,探究不同抛光参数对钛合金表面质量的影响,以实现钛合金构件的高质高效抛光。方法 深入探究了加工电压、加工间隙、电解质质量分数和抛光转速等参数对钛合金抛光表面粗糙度以及粗糙度变化率的影响,分析了不同抛光参数下的钛合金表面形貌变化,验证了磁流变电解复合抛光钛合金的可行性。结果 随着电解液中Na NO3质量分数的提高,钛合金表面粗糙度先减小后增大,质量分数为1.0%~2.5%时,得到了优于单磁流变抛光加工的抛光效果。不同加工电压下的表面粗糙度对比结果表明,在加工电压为0.1 V时,钛合金加工后表面粗糙度达到最小,而后随着加工电压的增大,加工区域表面粗糙度呈现增大趋势;随着加工间隙的增大,钛合金抛光表面粗糙度呈现先减小后增大的趋势;随着抛光工具转速增大,钛合金加工后表面粗糙度先减小后增大。相比于单一的磁流变抛光,磁流变电解复合抛光钛合金90 min,可使表面粗糙度从初始323 nm降低至15nm,加工效率提高了62.5%。结论 磁流变电解复合抛光工艺能够用于钛合金人工关节假体高效高质量的抛光。  相似文献   

4.
为提高氧化锆陶瓷工件的表面质量,采用磁性复合流体(由包含纳米级铁磁颗粒的磁流体与包含微米级羰基铁颗粒的磁流变液混合而成)对氧化锆陶瓷进行抛光,以达到降低材料表面粗糙度和减少表面与亚表面损伤的目的。利用田口方法设计3因素3水平正交试验,着重分析磁铁转速、加工间隙和抛光液磨粒粒径对表面粗糙度和材料去除率的影响规律,并采用方差分析法分析各因素对2个评价指标的影响权重。可达到最低表面粗糙度的工艺参数组合为:磁铁转速,300 r/min;加工间隙,0.5 mm;磨粒粒径,1.25μm。可达到最高材料去除率的工艺参数组合为:磁铁转速,400 r/min;加工间隙,0.5 mm;磨粒粒径,2.00μm。根据优化的工艺参数进行抛光,表面粗糙度最低可达4.5 nm,材料去除率最高可达0.117μm/min,优化效果显著。利用遗传算法优化BP神经网络建立抛光预测模型,预测误差为3.948 4%。  相似文献   

5.
目的研发一种高效、高质量氧化锆陶瓷超光滑表面加工技术。方法采用大抛光模磁流变抛光方式加工氧化锆陶瓷,利用自主研发的磁流变平面抛光装置,配制含有金刚石磨粒的磁流变抛光液,通过设计单因素实验,研究抛光时间、工作间隙、工件转速和抛光槽转速等主要工艺参数对氧化锆陶瓷平面磁流变加工性能的影响,并对材料去除率和表面粗糙度进行分析。结果在工作间隙为1.4 mm、工件转速为100 r/min、抛光槽转速为25 r/min的工艺条件下,表面粗糙度在达到饱和之前随时间的增加而降低。抛光30 min达到饱和,表面粗糙度Ra达到0.7 nm。继续延长抛光时间,表面粗糙度不再改善。氧化锆陶瓷的材料去除率随着工件转速和抛光槽转速的增加而增大,随着工作间隙的增大而减小。当工件转速为300 r/min时,材料去除率可以达到1.03 mg/min;抛光槽转速为25 r/min时,材料去除率可以达到0.80 mg/min;工作间隙为1.0 mm时,材料去除率最高可达0.77 mg/min。结论采用大抛光模磁流变抛光方法可以提高氧化锆陶瓷的材料去除率,同时获得纳米级表面粗糙度,实现氧化锆陶瓷的高效超光滑表面加工。  相似文献   

6.
傅琳  邵蓝樱  杨居儒  吕冰海  邓乾发  王旭 《表面技术》2023,52(1):232-241, 265
目的 研究球面滚子在剪切增稠抛光过程中,不同抛光参数对表面粗糙度的影响,获得滚子光滑滚动面,并优化抛光工艺参数。方法 基于田口实验设计,以表面粗糙度Sa为评价指标,分析磨粒种类、磨粒浓度、抛光转速、抛光间距等4个抛光工艺参数对球面滚子剪切增稠抛光后表面粗糙度的影响。通过实验分析表面粗糙度Sa的信噪比结果,得出最优的参数组合,并通过摩擦磨损实验评价抛光表面的摩擦磨损性能。结果 得到了优化的工艺参数,Al2O3与SiO2混合磨粒的质量比为1∶1,磨粒的质量分数为10%,抛光转速为70 r/min,抛光间距为4 mm,抛光时间为30 min。在此优化的工艺参数下,球面滚子表面粗糙度Sa从(40±10)nm降至(8.51±2)nm。结论 剪切增稠抛光可以有效地去除球面滚子的表面缺陷,且在抛光过程不会改变滚子的圆度,抛光后滚子表面的摩擦因数减小,表面不易发生氧化物堆积。采用剪切增稠抛光可以有效提高GCr15球面滚子的表面质量。  相似文献   

7.
目的 针对微结构抛光过程中形貌精度损伤的问题,开发一种环状MCF(Magnetic Compound Fluid,MCF)抛光工具,探究在双磁场作用下MCF工具的抛光性能。方法 采用工业相机观察不同条件下MCF抛光工具的成形特征,通过定量分析MCF抛光工具的成形参数,构建最优MCF抛光工具特征参数;通过分析双磁场作用下工件表面的磁场强度,建立磁场矢量模型,探究磁场分布与MCF宏观形貌的内在联系;观察磁簇微观形貌,分析MCF抛光工具的内部特征;试验研究MCF组分、磁铁转速nm、载液板转速nc和加工间隙Δ对工件表面粗糙度Ra的影响规律,探究最优的抛光参数。结果 当磁铁偏心距r=2 mm,MCF供应量V=1.5 mL时,MCF抛光工具的成形特征相对最优,得到了MCF抛光工具的参数,a=28.70 mm,b=26.90 mm,c1=1.58 mm,c2=1.30 mm,d0=48.60 mm,h=7.20 mm,di= 26.50 mm;磁簇分布方向与磁场矢量方向一致,铁粉沿着磁力线方向分布,磨粒分布在铁粉外部,α–纤维穿插于磁簇内部或磁簇与磁簇之间;通过抛光试验获得了较低表面粗糙度的最佳工艺参数,最佳MCF组分配比(均以质量分数计)为羰基铁粉40%、磨粒12%、α–纤维3%、水基磁流体45%,最佳载液板转速nc=300 r/min,最佳磁铁转速nm=400 r/min,最佳加工间隙Δ=1 mm。结论 在抛光20 min后,工件的表面粗糙度由0.578 μm降至0.009 μm,下降率约为98.44%,证明在双磁场作用下环状MCF抛光工具具有稳定且高效的抛光能力。  相似文献   

8.
目的 去除难加工材料钴铬钼合金车削后形成的规则性螺旋刀痕并获得超光滑表面。方法 采用磁流变抛光方法,对车削后的钴铬钼合金表面进行抛光加工。研究了磁体排布方式、加工间隙、抛光装置、转速和磨料粒径等工艺参数对钴铬钼合金表面形貌和表面粗糙度的影响规律,寻找获得超光滑表面的工艺参数组合,并对抛光后的钴铬钼合金表面使用表面轮廓仪进行测量。结果 钴铬钼合金表面形貌受各方面因素的综合影响,双磁体异向排布的磁通密度向工件集中,使得磁性羰基铁颗粒与金刚石磨料在抛光过程中结合力更强,增大了有效工作区域;表面粗糙度随着加工间隙的增加(从1 mm增大到4 mm)先减小后增大,在2 mm时得到优化的加工效果;表面粗糙度随着抛光装置转速的增加(从400 r.min–1增大到1 000 r.min–1)先减小后增大,在600 r.min–1时得到优化的加工效果;相比于0.5、1.5、2.5 µm粒径的金刚石磨料,使用2 µm的金刚石磨料进行抛光时表面粗糙度最小。当使用双磁体异向排布,在工作间隙为2 mm、抛光装置转速为600 r.min–1、金刚石磨料粒径为2 μm的工艺参数组合下对钴铬钼合金采用磁流变抛光加工120 min时,其表面粗糙度从初始的640 nm 降低至5 nm。结论 应用磁流变抛光方法抛光钴铬钼合金可以得到超光滑表面。  相似文献   

9.
目的 通过无心车床车削去除GH2132线材的表面缺陷,分析无心车床加工参数对线材表面粗糙度、尺寸误差和表面显微硬度的响应关系,并建立GH2132线材表面灰色关联度多目标优化模型,确定可行工艺参数域。方法 采用响应曲面中心复合设计,测量车削后GH2132线材的表面粗糙度、尺寸误差和表面显微硬度;利用响应曲面法(Response Surface Method,RSM)分别建立表面粗糙度、尺寸误差和表面显微硬度的单目标预测模型,确定单目标优化最优工艺参数组;基于灰色关联分析(Grey Correlation Analysis,GRA)理论,以表面粗糙度、尺寸误差和表面显微硬度为优化指标进行降维处理,构建车削工艺参数与灰色关联度的二阶回归预测模型;绘制车削工艺参数与灰色关联度值的等值线图,确定可行工艺参数域。结果 对建立的表面粗糙度、尺寸误差和表面显微硬度的单目标预测模型进行方差分析,显著度均小于0.000 1。得到了最小表面粗糙度工艺参数组,切削速度n=373.919 r/min,进给速度vf =0.475 m/min。得到了最小尺寸误差工艺参数组,n=375.636 r/min,vf =0.596 m/min。得到了最大表面显微硬度工艺参数组,n=337 r/min,vf = 0.903 m/min。对于灰色关联度多目标预测模型,误差范围为0.13%~9.4%,确定的可行工艺参数域对应的最小灰色关联度值为0.544 37。结论 基于灰色关联分析的多目标预测模型的准确度较高,主轴转速n对多目标的响应程度大于进给速度vf。通过确定可行工艺参数域,为GH2132线材去除表面缺陷提供工程参考。  相似文献   

10.
半球谐振子的加工效率是影响半球谐振陀螺仪应用的主要因素。在环形磁流变抛光方式的基础上,提出平面化类比的简化加工抛光器并探索其加工性能。通过单因素探索试验和正交试验研究磁感应强度、抛光器转速、加工间隙、金刚石粒径等因素对抛光性能的影响。结果表明:使用环形磁流变抛光器抛光熔石英,当磁场磁感应强度较强,抛光器转速350 r/min,加工间隙0.6 mm,金刚石粒径为0.5~1.0 μm时,石英材料去除率为191.2 nm/min,表面粗糙度Ra值为3.31 nm,抛光效果良好。   相似文献   

11.
永磁场磁力研磨TC11钛合金的实验研究   总被引:4,自引:4,他引:0  
肖阳  孙友松  陈光忠 《表面技术》2017,46(2):229-234
目的解决钛合金机械加工后表面质量差的难题。方法采用磁力研磨工艺对TC11钛合金进行了表面光整加工。以表面粗糙度为主要评价指标,研究了磁力研磨工艺参数对钛合金表面质量的影响,并对工艺参数进行了优化。采用优化后的工艺参数对钛合金进行了表面光整加工,研究了磁力研磨工艺对钛合金金相组织的影响。结果当加工间隙为3 mm时,研磨压力适宜,加工后工件表面粗糙度值最小。采用粒径为100目的磨粒使工件表面研磨加工后纹理更细,表面粗糙度值最低。提高主轴转速,工件表面材料去除率增加,当主轴转速为1500 r/min时,加工后工件表面粗糙度值最小。对比工件加工前后的金相组织,加工后试样表面组织晶粒变细,晶界增多,工件表面应力状态由张应力转变为压应力。结论实验确定了较优的工艺参数组合,即:加工间隙为3 mm,磨粒粒径为100目,主轴转速为1500 r/min。采用永磁场磁力研磨工艺,能够大幅降低TC11钛合金表面粗糙度,并使钛合金表面组织得到改善。  相似文献   

12.
目的 为了提高非球面光学模具的表面质量和加工效率。方法 分析当前非球面超精密抛光方式及其特点,针对小口径非球面光学模具,提出一种小球头接触式抛光及磁流变抛光的组合加工方法,对小球头进行设计,并抛光碳化钨圆片,对比小球头接触式抛光及轴向、径向、水平方向磁极的永磁体球头的磁流变抛光的加工性能。分别对编号为1#、2#、3#等3个相同轮廓形状的碳化钨非球面模具进行单一方式抛光试验和组合加工试验。结果 通过对小球头抛光碳化钨圆片的加工性能进行分析发现,接触式抛光小球头的去除率为926.5 nm/h,表面粗糙度达到4.396 1 nm;轴向、径向、水平方向磁极的永磁体小球头磁流变抛光的去除率分别为391.7、344.3、353.7 nm/h,表面粗糙度分别为1.425 2、1.877 6、1.887 5 nm。对采用组合加工方法抛光碳化钨非球面的有效性进行验证时发现,非球面1#在单一接触式抛光60 min后表面粗糙度从8.786 6 nm降至3.693 2 nm;非球面2#在单一磁流变抛光60 min后表面粗糙度从8.212 1 nm降至1.674 5 nm;非球面3#在组合抛光方法下先进行15 min接触式抛光,再进行15 min磁流变抛光,表面粗糙度从8.597 2 nm降至1.269 4 nm,面形精度由175.2 nm提高到138.4 nm。结论 组合加工方法可以弥补单一抛光方法的缺陷,并能有效地提高工件的面形精度。与单一接触式抛光方法相比,组合加工方法获得的表面质量更好,抛光后表面粗糙度为1.269 4 nm,远小于单一接触式抛光下的3.693 2 nm;与单一磁流变抛光方法相比,组合加工方法更高效,将样件抛光到同等级别粗糙度所需时间从60 min减少至30 min。  相似文献   

13.
目的为实现陶瓷球表面的高效超光滑抛光,提出一种集群磁流变抛光陶瓷球的新工艺。方法在传统V型槽抛光陶瓷球的基础上增加集群磁极和上盘旋转动力,配制适当的磁流变抛光液,通过在上下抛光盘的集群磁极,形成磁流变抛光垫包覆陶瓷球,进行研磨抛光加工。然后,基于陶瓷球工件几何运动学和动力学分析得到球体各运动参数的影响关系,利用机械系统分析软件ADAMS对成球过程进行动态仿真,可以看出该抛光方法能够主动控制球体的运动,实现球面抛光轨迹的快速均匀全包络。最后,根据仿真结果,通过调整上下抛光盘的转速比、偏心距和加工间隙等参数,控制陶瓷球的自转角,实现球面的快速高效超光滑抛光。结果用自行设计的陶瓷球集群磁流变抛光实验装置,对氮化硅陶瓷球进行抛光2.5 h,表面粗糙度Ra从60 nm左右下降到10 nm左右,球形误差为0.13μm,达到了陶瓷球轴承氮化硅球的国家标准(G5水平)。结论集群磁流变抛光方式可以实现球面抛光轨迹的快速均匀全包络,实现陶瓷球表面的高效超光滑抛光,值得进一步深入探讨研究。  相似文献   

14.
本文进行了氮化铝基片的集群磁流变抛光加工研究,分析了主要工艺参数的影响和加工表面形貌特征.实验结果表明:集群磁流变抛光加工氮化铝基片可以实现高效率超光滑抛光,原始表面Ra1.730 2μm抛光60 min后可以达到Ra0.037 8μm.选用碳化硅磨料,磨料质量浓度为0.05 g/mL,工件与抛光盘转速比为5.8左右,...  相似文献   

15.
Optical glasses used in a range of industrially important optoelectronic devices must be polished to nano-level roughness for proper device operation. Polishing process with magnetic compound fluid slurry (MCF polishing) under a rotary magnetic field is an influential candidate for the method to precisely polish optical glass. MCF slurry has been successfully utilized to polish a variety of materials, ranging from soft optical polymers to hard optical glasses. MCF was developed by mixing a magnetic fluid and a magnetorheological fluid with the same base solvent, and hence includes not only μm-sized iron particles but also nm-sized magnetite particles. To elucidate the behaviour of material removal in MCF polishing, this study measured the normal and shear forces generated in the polishing zone during polishing. From these measurements, the distributions of pressure P and shear stress τ were obtained. The distribution of material removal rate (MRR) was investigated through spot polishing of borosilicate glass. The effects of three process parameters, namely magnet revolution speed, MCF carrier rotational speed and working gap, on pressure P, shear stress τ and the MRR were also investigated. The results revealed that P is higher near the centre of the interacting area (i.e. the polishing spot centre) and the point of maximum shear stress τ appears at about 5 mm from the polishing spot centre. All of P, τ and MRR are sensitive to MCF carrier rotational speed and working gap but insensitive to magnet revolution speed. Shear stress is more sensitive to these process parameters than the pressure. Cross-sectional profiles of the polishing spots exhibit a characteristic symmetric W-shape; material removals are minimal at the spot centre and maximal at approximately 8.2–10.2 mm from the spot centre depending on the process parameters. MRR is proportional to the MCF carrier rotational speed and is negatively correlated with working gap. An MRR model involving both the pressure and shear stress in MCF polishing is proposed. In the model, MRR is more dominated by shear stress than by pressure.  相似文献   

16.
苏永生  李亮  钟相强 《表面技术》2022,51(10):321-327
目的 针对激光选区熔化钛合金开展超声振动辅助铣削性能和作用机理研究,提高增材制造钛合金表面加工质量、加工精度及加工效率,推动增材制造钛合金构件在高端装备业领域的广泛应用。方法 在传统铣削和超声振动辅助铣削下,采用聚晶金刚石刀具开展激光选区熔化钛合金铣削试验研究,分析不同条件下的表面硬度、切削力、表面形貌、表面粗糙度和切屑黏结的差异性。结果 激光选区熔化钛合金硬度单次测量及其平均值均高于传统钛合金。常规干铣削激光选区熔化钛合金时,切削力随着转速的增大而呈现下降趋势,随着进给速度和切削深度的增加表现出逐渐增大的趋势。在传统铣削下,传统钛合金表面形貌存在明显的刀具划痕,而超声振动铣削时,激光选区熔化钛合金表面形貌总体表现出更加的光滑和平整。激光选区熔化钛合金在常规铣削和超声辅助铣削过程中,刀具前后刀面都出现了严重的钛合金切屑黏结现象。结论 激光选区熔化钛合金常规干铣削时,增大转速或降低进给速度和切削深度能够降低切削力。在相同切削参数下,激光选区熔化钛合金超声铣削质量优于传统钛合金常规铣削表面质量。激光选区熔化钛合金表面质量改善的作用机理主要归因于激光选区熔化钛合金的金相组织特性及超声振动时断...  相似文献   

17.
目的探究磁流变动压复合抛光基本原理及抛光力学特性。方法通过建立磁流变动压复合抛光过程中流体动压数学模型,分析抛光盘面结构化单元对抛光力学特性的影响规律,并优化其结构。搭建磁流变动压复合抛光测力系统,探究工作间隙、抛光盘转速、工件盘转速和凸轮转速对抛光力的影响规律,基于正交试验,优化抛光效果。结果抛光盘面结构化单元的楔形区利于流体动压效应的产生,且流体动压随楔形角和工作间隙的增大而减少,随楔形区宽度的增大而增大。结构化单元较为合理的几何参数为:楔形角3°~5°,工作间隙0.2~1.0 mm,楔形区宽度15~30 mm。法向力Fn随工作间隙的增大而减小,随工件盘转速的增大而增大,随抛光盘和凸轮转速的增大而先增大后减小;剪切力Ft随工作间隙的增大而减小,随工件盘、抛光盘和凸轮转速的增大均呈现先增大后减小的规律。通过正交试验获得优化工艺参数为:抛光盘转速60 r/min,工件盘转速600 r/min,凸轮转速150 r/min。在羰基铁粉(粒径3μm、质量分数35%)、SiC磨料(粒径3μm、质量分数5%)、工作间隙0.4 mm和磁感应强度0.1 T工况下,抛光2 in单晶硅基片4 h后,表面粗糙度Ra由20.11 nm降至2.36 nm,材料去除率为5.1 mg/h,初始大尺度纹理被显著去除。结论磁流变动压复合抛光通过在抛光盘面增设结构化单元,以引入流体动压效应,强化了抛光力学特性,并利用径向往复运动的动态磁场实现柔性抛光头的更新和整形,最终达到了提高抛光效率和质量的目的。  相似文献   

18.
苗淼 《机床与液压》2016,44(15):122-125
为了优化钛合金抛光工艺参数,采用中心复合响应曲面法,建立了抛光表面粗糙度的预测模型;采用方差分析方法,检验了预测模型以及各抛光参数的显著性,分析了各抛光参数对表面粗糙度及表面形貌的影响规律。结果表明:该预测模型可对抛光表面粗糙度进行有效的预测;页轮粒度、页轮线速度和进给速度对表面粗糙度影响极显著;表面粗糙度随页轮粒度、页轮线速度和进给速度的增大而减小;表面形貌整体均匀,存在一定的隆起和沟壑。  相似文献   

19.
为提高集群磁流变平面抛光效率,在抛光盘表面增加微结构,以增强加工过程中的流体动压作用。使用平面抛光盘和表面加工有孔洞、V形槽、U形槽、矩形槽等不同微结构的抛光盘进行抛光试验及抛光压力特性试验,研究了加工间隙和工件转速对加工效果的影响。结果表明:抛光盘表面微结构对工件材料去除率影响较大,不同微结构盘材料去除率从大到小顺序为V形盘>U形盘>平面盘>孔洞盘>矩形盘,其中V形盘的材料去除率比平面盘高25%以上;所有抛光盘均能获得纳米级(Ra在8 nm以内)表面。当加工间隙为0.9~1.0 mm、工件转速为550 r/min时,加工效果较好。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号