共查询到19条相似文献,搜索用时 203 毫秒
1.
近年来, 深度学习技术已在滚动轴承故障检测和诊断领域取得了成功应用, 但面对不停机情况下的早期故障在线检测问题, 仍存在着早期故障特征表示不充分、误报警率高等不足. 为解决上述问题, 本文从时序异常检测的角度出发, 提出了一种基于深度迁移学习的早期故障在线检测方法. 首先, 提出一种面向多域迁移的深度自编码网络, 通过构建具有改进的最大均值差异正则项和Laplace正则项的损失函数, 在自适应提取不同域数据的公共特征表示同时, 提高正常状态和早期故障状态之间特征的差异性; 基于该特征表示, 提出一种基于时序异常模式的在线检测模型, 利用离线轴承正常状态的排列熵值构建报警阈值, 实现在线数据中异常序列的快速匹配, 同时提高在线检测结果的可靠性. 在XJTU-SY数据集上的实验结果表明, 与现有代表性早期故障检测方法相比, 本文方法具有更好的检测实时性和更低的误报警数. 相似文献
2.
针对由工作环境和设备状况的差异引起的轴承早期故障检测模型可靠性差、误报警率高的问题,根据早期故障检测的特点和需求,提出一种多尺度注意力深度领域适配模型。首先,将监测信号处理成由原始信号、希尔伯特-黄变换边际谱、频谱组成的三通道数据;然后,通过在残差注意力模块中增加不同尺寸的滤波器以提取多尺度深度特征,使用卷积-反卷积操作来重构输入信息从而获得注意力信息,并且将注意力信息与多尺度特征融合构建了一种多尺度残差注意力模块,用于提取对早期故障表征能力更强的注意力特征;其次,在所提取到的注意力特征基础上,构建基于交叉熵和最大均值差异(MMD)正则化约束的损失函数来实现领域适配;最后,采用随机梯度下降算法进行网络参数优化,构建端到端的早期故障检测模型。在IEEE PHM-2012数据挑战赛数据集上的实验结果表明,与8种代表性的早期故障检测和诊断方法以及迁移学习算法相比,所提方法能够在不延迟报警时间点的前提下,分别比8种方法的平均误报警率降低了62.7%和61.3%,有效提高了早期故障检测的鲁棒性。 相似文献
3.
针对由工作环境和设备状况的差异引起的轴承早期故障检测模型可靠性差、误报警率高的问题,根据早期故障检测的特点和需求,提出一种多尺度注意力深度领域适配模型。首先,将监测信号处理成由原始信号、希尔伯特-黄变换边际谱、频谱组成的三通道数据;然后,通过在残差注意力模块中增加不同尺寸的滤波器以提取多尺度深度特征,使用卷积-反卷积操作来重构输入信息从而获得注意力信息,并且将注意力信息与多尺度特征融合构建了一种多尺度残差注意力模块,用于提取对早期故障表征能力更强的注意力特征;其次,在所提取到的注意力特征基础上,构建基于交叉熵和最大均值差异(MMD)正则化约束的损失函数来实现领域适配;最后,采用随机梯度下降算法进行网络参数优化,构建端到端的早期故障检测模型。在IEEE PHM-2012数据挑战赛数据集上的实验结果表明,与8种代表性的早期故障检测和诊断方法以及迁移学习算法相比,所提方法能够在不延迟报警时间点的前提下,分别比8种方法的平均误报警率降低了62.7%和61.3%,有效提高了早期故障检测的鲁棒性。 相似文献
4.
针对传统故障诊断方法中特征提取技术难度大、故障样本获取困难等问题,在深度学习计算框架下提出了一种半监督训练的故障检测方法,利用深度信念网络中的受限波茨曼机堆栈结构实现了数据高层特征的自动提取,结合支持向量数据描述方法实现了异常数据检测,只需利用正常工况的数据样本进行网络训练和模型拟合,无需故障样本数据,也无需人工干预进行信号特征提取,即能实现对故障数据进行的实时检测和判别;经采用标准轴承实验数据的三组故障数据进行验证,故障识别率达到100%,具有很强的工程应用价值。 相似文献
5.
针对供配电网络中变压器故障检测和预报的不足,提出基于深度学习的变压器故障检测方法,详细介绍了变压器监测数据预处理方法及步骤,给出了深度学习网络的具体结构和学习过程,深度学习结果表明该故障检测方法的有效性和实用性。 相似文献
6.
7.
常规的人体舞蹈姿态检测方法存在多姿态动作检测精度和识别率较低,因此提出基于深度迁移学习的人体舞蹈姿态检测方法。首先,利用Kinect传感器采集人体舞蹈姿态动作三维数据。其次,基于滑动窗口间接分割原理识别动作类别。再次,利用深度迁移学习建立动作识别模型,识别人体舞蹈的特定动作和非特定动作。最后,结合人体关节位置特征,检测人体舞蹈姿态动作中左手、右手、上身及全身4类局部特征信息。实验分析可知,新的方法应用后,舞蹈姿态检测的交并比值较高,显著提升了检测准确性。 相似文献
8.
《信息与电脑》2019,(17):29-35
近年来,深度学习作为机器学习领域的一个分支,已经展现出强大的能力,其中基于卷积神经网络的无监督学习更是逐渐流行,之前有很多关于图像到图像翻译的工作,但都需要成对输入图片数据,这无疑增加了训练数据集获取的难度。笔者旨在实现在缺少成对数据的情况下使用生成对抗网络GAN学习从源数据域Y到目标数据域Y以实现图像到图像的翻译和风格迁移,通过学习映射G:X→Y和一个相反的映射F:Y→X,使它们成对,同时加入一个循环一致性损失函数,以确保F(G(X))≈X(反之亦然),最终实现通过输入一张具有任意风格的源图片进入网络并生成指定风格的图像,实现风格迁移。在缺少成对训练数据的情况下,本文成功实现了horse2zebra数据集和vangogh2photo数据集的风格迁移。 相似文献
9.
目前,网络对抗对入侵检测智能化和自主性的需求不断提高,基于深度学习的方法通过训练和学习来区分复杂攻击模式和行为,但有监督的学习方法需要专家知识和大量人工开销。针对上述问题,文章提出一种基于集成学习的无监督网络入侵检测方法,并使用基于3种不同异常检测理念的深度学习检测器,在3种不同集成逻辑下对各单检测器的检测结果进行检测判定。该方法可以综合分析时间序列数据中不同类型的异常数据,降低无监督异常检测模型由于过度拟合所造成的影响,并以一种高效的在线方式检测可能存在的网络攻击数据流。在KDD CUP 1999和CSE-CIC-IDS 2018数据集上进行验证,实验结果表明,与其他单一的无监督异常检测模型相比,文章提出的集成方法结合了不同无监督检测模型的优势,适用于对多种网络入侵引起的异常进行检测。 相似文献
10.
随着网络技术和人工智能技术的不断发展,恶意代码对网络空间安全的威胁日益增加,对社会经济、国家安全构成严重威胁。恶意程序数量级呈指数增加大大增加了恶意代码分析的工作量,传统的恶意代码检测方式难以应对当下日益复杂的网络空间环境。本文提出了一种面向深度迁移学习的恶意代码可视化检测,基于计算机视觉技术将恶意代码进行可视化操作,并利用深度迁移学习和目标检测技术,对恶意代码相关特征片段进行检测分类。实验结果同样也表明,基于目标检测和计算机视觉技术,进行恶意代码可视化检测分析的方法在检测准确率、检测速度以及识别能力等方面较传统的恶意代码分类方法都表现出了更优异的性能。 相似文献
11.
针对滚动轴承振动信号故障特征难以自动提取和故障类别难以自动准确识别的问题,提出一种改进集成深层自编码器(IEDAE)方法.首先,改进自编码器的损失函数并设计3种小波卷积自编码器;其次,利用区分自编码器、小波卷积自编码器等5种自编码器构造相应的深层自编码器,并设计“跨层”连接以缓解深层网络的梯度消失现象,实现对轴承振动信号的无监督预训练和有监督微调;最后,通过加权平均法输出识别结果,以保证诊断结果的准确性和稳定性.实验结果表明,改进集成深层自编码器方法能有效地对滚动轴承进行多种工况和多种故障程度的识别,较好地摆脱了对人工特征提取的依赖,特征提取能力和识别能力优于现有其他方法. 相似文献
12.
针对传统滚动轴承故障诊断方法过度依赖专家经验和故障特征提取困难的问题,结合深度学习处理高维、非线性数据的优势,提出一种基于改进深层小波自编码器的轴承智能故障诊断方法。该方法改进小波自编码器的损失函数并引入收缩项限制,再将多个小波自编码器进行堆叠构成深层小波自编码器,并引入“跨层”连接缓解梯度消失现象,最后利用大量无标签数据对网络进行无监督预训练并利用少量带标签数据对模型参数有监督微调。轴承诊断实验结果表明,该方法能有效地对轴承进行多种故障类型和多种故障程度的识别,特征提取能力和识别能力优于人工神经网络、深度信念网络、深度自编码器等方法。 相似文献
13.
滚动轴承作为旋转机械中的必需元件,其任何故障都可能导致机器乃至整个系统发生故障,从而导致巨大的经济损失和时间的浪费,因此必须要及时准确地诊断滚动轴承故障。针对传统极限学习机中模型参数对滚动轴承故障诊断精度影响较大的问题,提出了一种基于贝叶斯优化的深度核极限学习机的滚动轴承故障诊断方法。首先,将自动编码器与核极限学习机相结合,构建了深度核极限学习机(Deep kernel extreme learning machine, DKELM)模型。其次,利用贝叶斯优化(Bayesian optimization, BO)算法对DKELM中的超参数进行寻优,使得训练数据集和验证数据集在DKELM模型中的分类错误率之和最低。然后,将测试数据集输入到训练好的BO-DKELM中进行故障诊断。最后,采用凯斯西储大学轴承故障数据集对所提方法进行验证,最终故障诊断精度为99.6%,与深度置信网络和卷积神经网络等传统智能算法进行对比,所提方法具有更高的故障诊断精度。 相似文献
14.
为提高轴承故障分类收敛速度和分类精度,提出一种动态调节学习率的堆叠自编码网络(SAE)。初始时刻给予一个较大的学习率,迭代过程中利用当前重构误差动态调节学习率的大小,根据重构误差梯度的正负值给出两种不同的学习率减小策略,使学习率大小更符合网络当前的运行状态,最后通过不同的有标签数据量进行反向微调,验证故障分类识别的准确率。实验结果表明:相比固定学习率,该动态调节学习率SAE网络预训练收敛时间减少17.70%,重构误差下降22.92%,故障分类准确率得到提高,且能在保持分类准确率的前提下,减少有标签样本量。 相似文献
15.
由于轴承故障数据存在数据量少和分布不均衡的问题,将迁移学习引入故障诊断领域,同时由于轴承故障数据的分布与源数据集分布差异巨大,直接采用迁移学习的方法会产生负迁移效应,即由于源数据集与目标数据集间分布差异过大而导致无法学习到源数据集的知识,提出一种对迁移学习进行改进的诊断新方法:即两步迁移学习法,使用DCGAN来制作辅助... 相似文献
16.
在传统卷积神经网络与分类器相结合的故障诊断方法中, CNN用于故障特征提取时, 存在着提取的特征质量不高与运行时间较长的问题. 针对以上问题, 本文提出了一种基于改进单层卷积神经网络及LightGBM的故障诊断模型. 该模型通过将特征距离函数嵌入CNN的损失函数中, 提升了CNN特征提取的能力, 增强了CNN与后续分类器之间的联系, 从而提升了整体模型的故障诊断能力. 于此同时, 经过改进的单层的卷积神经网络进一步缩短了模型运行的时间, 提升了模型的诊断效率. 通过对两个不同的公共数据集进行对比实验, 其结果表明, 本文所提诊断模型对多种轴承故障的诊断准确率与诊断效率显著高于其他诊断模型. 相似文献
17.
针对目前滚动轴承故障诊断主要采用监督式深度学习提取故障特征以及检测故障种类为粗粒度的现状,提出一种基于高斯混合模型(Gaussian mixed models,GMM)和深度残差收缩网络(deep residual shrinkage networks,DRSN)的滚动轴承细粒度故障诊断方法。GMM模型集成多个高斯分布函数,拟合细粒度故障数据的分布情况,实现对没有标签的轴承振动信号进行聚类,DRSN模型中注意力机制从大量故障特征信息中聚焦于对当前任务更为关键的信息,软阈值化旨在为处于不同健康状态的轴承样本设置不同的阈值。在凯斯西储大学(Case Western Reserve University,CWRU)滚动轴承故障数据中收集30种轴承健康状态对该方法进行了验证,结果表明,将非监督模型与深度学习模型融合,能够处理不含标签情况下的轴承故障数据,实现对轴承故障进行细粒度分类的目的,为后续的设备维护提供依据,具有较好的实际工程意义和推广性。 相似文献
18.
传统智能故障诊断算法需要依赖人工特征提取和专家知识,而旋转机械设备复杂的工作环境和工况使得传统算法在实际应用中缺乏良好的自适应性和泛化性.针对以上问题,提出基于卷积神经网络(Convolutional neural network,CNN)的层级化故障诊断算法(CNN based hierarchical fault diagnosis,CNN-HFD).首先,将原始振动信号进行分段预处理,以实现数据扩容;然后,分别根据故障类型和故障程度设计多个卷积神经网络,并将原始振动数据以某一时间步进行分割,作为卷积神经网络的输入进行训练;最后,将待识别信号送入CNN-HFD模型,经过分层故障诊断,在末端卷积神经网络输出相应故障类别和程度.通过滚动轴承振动数据库的实验表明,所提出的算法不仅具有高达99.5%以上的故障识别率,而且在负载发生变化时依然可以保持高达97%以上的故障识别率,具有较好的鲁棒性和泛化性能. 相似文献
19.
针对轴承故障数据严重失衡导致所训练的模型诊断能力和泛化能力较差等问题,提出基于Wasserstein距离的生成对抗网络来平衡数据集的方法。该方法首先将少量故障样本进行对抗训练,待网络达到纳什均衡时,再将生成的故障样本添加到原始少量故障样本中起到平衡数据集的作用;提出基于全局平均池化卷积神经网络的诊断模型,将平衡后的数据集输入到诊断模型中进行训练,通过模型自适应地逐层提取特征,实现故障的精确分类诊断。实验结果表明,所提诊断方法优于其他算法和模型,同时拥有较强的泛化能力和鲁棒性。 相似文献