共查询到15条相似文献,搜索用时 46 毫秒
1.
如何将多张图像中的互补信息保存到一张图像中用于全面表征场景是具有挑战性的课题。基于此课题,大量的图像融合方法被提出。红外可见光图像融合(IVIF)作为图像融合中一个重要分支,在语义分割、目标检测和军事侦察等实际领域都有着广泛的应用。近年来,深度学习技术引领了图像融合的发展方向,研究人员利用深度学习针对IVIF方向进行了探索。相关实验工作证明了应用深度学习方法来完成IVIF相较于传统方法有着显著优势。对基于深度学习的IVIF前沿算法进行了详细的分析论述。首先,从网络架构、方法创新以及局限性等方面报告了领域内的方法研究现状。其次,对IVIF方法中常用的数据集进行了简要介绍并给出了定量实验中常用评价指标的定义。对提到的一些具有代表性的方法进行了图像融合和语义分割的定性评估、定量评估实验以及融合效率分析实验来全方面地评估方法的性能。最后,给出了实验结论并对领域内未来可能的研究方向进行了展望。 相似文献
2.
目的 红外与可见光图像融合的目标是获得具有完整场景表达能力的高质量融合图像。由于深度特征具有良好的泛化性、鲁棒性和发展潜力,很多基于深度学习的融合方法被提出,在深度特征空间进行图像融合,并取得了良好的效果。此外,受传统基于多尺度分解的融合方法的启发,不同尺度的特征有利于保留源图像的更多信息。基于此,提出了一种新颖的渐进式红外与可见光图像融合框架(progressive fusion, ProFuse)。方法 该框架以U-Net为骨干提取多尺度特征,然后逐渐融合多尺度特征,既对包含全局信息的高层特征和包含更多细节的低层特征进行融合,也在原始尺寸特征(保持更多细节)和其他更小尺寸特征(保持语义信息)上进行融合,最终逐层重建融合图像。结果 实验在TNO(Toegepast Natuurwetenschappelijk Onderzoek)和INO(Institut National D’optique)数据集上与其他6种方法进行比较,在选择的6项客观指标上,本文方法在互信息(mutual Information, MI)上相比FusionGAN(generative adversarial ... 相似文献
3.
李淑慧;蔡伟;王鑫;高蔚洁;狄星雨 《计算机工程与应用》2025,(9):25-40
红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与可见光图像融合方法进行梳理分析,根据不同的融合框架将融合方法分为基于自编码器、卷积神经网络、生成对抗网络和变换器,并对比分析这四类方法的特点;综述了IVIF的主要应用领域、常用的6个数据集和8个评价指标,并在典型数据集上对各类主流IVIF方法进行定性和定量评估。最后,总结了现有IVIF方法的局限性,并展望了IVIF的未来研究方向。 相似文献
4.
5.
现有的基于深度学习的红外和可见光图像融合方法大多基于人工设计的融合策略,难以为复杂的源图像设计一个合适的融合策略.针对上述问题,文中提出基于GhostNet的端到端红外和可见光图像融合方法.在网络结构中使用Ghost模块代替卷积层,形成一个轻量级模型.损失函数的约束使网络学习到适应融合任务的图像特征,从而在特征提取的同时完成融合任务.此外,在损失函数中引入感知损失,将图像的深层语义信息应用到融合过程中.源图像通过级联输入深度网络,在经过带有稠密连接的编码器提取图像特征后,通过解码器的重构得到融合结果.实验表明,文中方法在主观对比和客观图像质量评价上都有较好表现. 相似文献
6.
提出了一种基于提升小波变换的红外和可见光图像融合方法.对红外图像进行检测分割,将提取到的目标重要信息融合到可见光图像中.然后进行图像的提升小渡分解,对不同尺度下小波系数进行融合,以像素的局部平均梯度为高频系数融合准则,充分加入原始图像的边缘细节信息.最后依据融合后的小波系数重构图像.实验结果表明,该方法改善了融合效果,提高了运算速度. 相似文献
7.
红外与可见光图像融合是一门重要的图像处理技术,因其实用性被广泛应用.红外与可见光图像融合(infrared and visible image fusion,IVIF)是多模态图像融合技术中的一个重要分支,在对国内外的红外与可见光融合方法研究基础上,阐述了红外与可见光融合的基本理论,归纳了 IVIF技术现状,分析了传统方法和深度学习融合方法的优缺点;重点对IVIF深度学习方法进行了详细的总结和分析,并梳理了现有的数据集和融合性能评价指标.最后,结合实际应用探讨了当前IVIF面临的挑战问题,并对未来该领域的发展方向进行了展望. 相似文献
8.
基于NSCT的红外与可见光图像融合 总被引:2,自引:0,他引:2
提出一种基于非下采样Contourlet变换的红外与可见光图像融合方法。该方法对源图像经非下采样Contourlet变换分解后的高频系数,考虑不同传感器的成像机理进行活性度量,并结合多分辨率系数间相关性来实现加权融合;低频系数则通过一种局部梯度进行活性度量,再采用加权与选择相结合的规则实现融合。最后,通过非下采样Contourlet逆变换重构获得融合图像。实验结果表明了该方法的有效性和可行性。 相似文献
9.
红外与可见光图像融合作为一种针对增强技术被广泛应用,融合技术通过提取可见光和红外各自的显著特征,并将其保留在融合图像中,提高了后续高级视觉任务的效率或人工识别。在吸收国内外众多学者的研究的基础上,通过研究归纳,阐述了图像融合的定义与分类,系统性地总结了红外与可见光融合算法,分析了图像融合算法进一步发展的方向。 相似文献
10.
在弱可见光条件下,对同一场景监控的红外与可见光图像进行融合,使融合图像即显示红外目标,又能保留可见光图像的细节结构信息,方便观察者对场景的观察与监控。充分利用红外成像的特点,热目标与背景的温度差会使目标在红外图像中的灰度值更大。使用红外序列建立稳定的背景模型,当前帧与背景的差得到运动目标区域,然后,将目标区域内的红外目标融合到可见光图像中,达到对红外运动目标检测的目的。 相似文献
11.
红外与可见光图像融合(IVIF)技术旨在整合热辐射传感器和光学传感器所捕获相同场景的图像中的互补信息,生成一张更适合人类理解或计算机分析处理的融合图像.随着深度学习的发展,该技术在军事侦察、自动驾驶、安防监控等领域的作用愈发重要.以往的综述只对相关文献进行了归纳总结,鲜有从网络结构以及损失函数发展历程的角度进行详细分析,且缺乏最新的研究进展和对比实验.鉴于此,针对基于深度学习的IVIF方法展开全面回顾和展望.首先,从发展历程的角度对基于深度学习的IVIF方法进行回顾,介绍其网络结构和损失函数的演进过程;然后,总结IVIF中常见的数据集以及性能评价指标,并讨论未来所发布数据集应具备的特征;接着,对18种具有代表性的方法在3个公开数据集上进行大量实验,从主观和客观的角度分析不同方法的性能;最后,总结IVIF任务当前所面临的挑战,并展望未来的研究方向. 相似文献
12.
13.
红外与可见光融合图像融合是汽车高级驾驶辅助系统核心功能之一,能够较好地理解光线条件较差时车辆外部环境目标,对无人驾驶车辆和智能车辆识别环境具有重要作用,其中基于深度学习的神经网络算法在图像特征提取和分类中优势显著。针对汽车领域红外与可见光图像融合算法进行综述,分析了现代车辆对图像融合技术的需求;总结了基于数学方法框架的红外与可见光图像融合算法和最新发展;概述了基于神经网络结构的红外与可见光图像融合算法;最后讨论了车载红外与可见光图像融合技术的发展趋势。 相似文献
14.
针对现有融合方法缺乏通用性的问题,提出一种结合空间注意力和通道注意力的特征融合网络,设计一个端到端融合框架,采用两阶段的训练策略进行训练。在第一个阶段,训练一个自编码器用来提取图像的特征;在第二个阶段,使用提出的融合损失函数对融合网络进行训练。实验结果表明,该算法既能保留红外图像显著目标特征,还能在保留可见光图像细节上有很好的特性。主观和客观的实验分析验证了该算法的有效性。 相似文献
15.
红外图像即使在低光照条件下,也能根据热辐射的差异将目标与背景区分开来,而可见光图像具有高空间分辨率的纹理细节,此外,红外和可见光图像都含有相应的语义信息.因此,红外与可见光图像融合,需要既保留红外图像的辐射信息,也保留可见光图像的纹理细节,同时,也要反映出二者的语义信息.而语义分割可以将图像转换为带有语义的掩膜,提取源图像的语义信息.提出了一种基于语义分割的红外和可见光图像融合方法,能够克服现有融合方法不能针对性地提取不同区域特有信息的缺点.使用生成式对抗神经网络,并针对源图像的不同区域设计了2种不同的损失函数,以提高融合图像的质量.首先通过语义分割得到含有红外图像目标区域语义信息的掩模,并利用掩模将红外和可见光图像分割为红外图像目标区域、红外图像背景区域、可见光图像目标区域和可见光图像背景区域;然后对目标区域和背景区域分别采用不同的损失函数得到目标区域和背景区域的融合图像;最后将2幅融合图像结合起来得到最终融合图像.实验表明,融合结果目标区域对比度更高,背景区域纹理细节更丰富,提出的方法取得了较好的融合效果. 相似文献