首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
现有PCB缺陷检测方法的精确率较低而且模型复杂度也较高.针对这个问题,提出了基于改进YOLOv5s的Deep PCB缺陷检测算法.该算法在颈部网络(Neck)的C3层后添加了卷积注意力模块(Convolutional Block Attention Module,CBAM),对小目标的检测建立特征映射关系,对特征图进行注意力重构,赋予了小目标更高的特征权重,提高网络对印刷电路板(Printed Circuit Board,PCB)图像中小目标的特征提取能力.为了从根本上解决目标特征冗余的问题,实现网络的轻量化,并且确保网络检测的精确度,提出使用Ghost Conv模块替换Conv模块,同时将C3模块改为Ghost Bottleneck模块.使用有效交并比损失(EIOU Loss)函数代替完全交并比损失(CIOU Loss)函数,减小了预测框宽高与置信度的真实差值,减少了网络的回归损失.使用上海交通大学图像处理与模式识别研究所公开的Deep PCB数据集开展实验,结果表明本文算法相较于YOLOv5s,在IOU=0.5时,mAP提升了6.8%,速度提升了4.7 Fps,模型大小减少了2.9...  相似文献   

2.
针对塑料餐具表面缺陷人工检测效率低和深度学习模型计算量大布置成本高的问题,提出了一种基于YOLOv5的轻量化检测方法 FED-YOLOv5。在YOLOv5的骨干网络部分引入新型轻量级网络FasterNet,减少参数和计算量;同时添加高效注意力机制ECA,增强网络通道间的信息交流,最后在头部网络用解耦检测头替换耦合检测头,将分类和回归任务解耦,提高模型效率。实验结果表明,改进后的FED-YOLOv5与YOLOv5s相比参数量和计算量分别减少59.7%和63.3%,检测精度达91.6%,单张图片检测时间仅为4.6 ms,能够用于塑料餐具的外观检测工序,适合在有限计算资源的环境中部署。  相似文献   

3.
文章针对小目标检测存在的可利用特征少、定位精度要求高、数据集小目标占比少、样本不均衡和小目标对象聚集等问题,提出将coordinateattention注意力嵌入YOLOv5模型。Coordinateattention注意力机制通过获取位置感知和方向感知的信息,能使YOLOv5模型更准确地识别和定位感兴趣的目标。YOLOv5改进模型采用木虱和VisDrone2019数据集开展实验验证,实验结果表明嵌入coordinate attention能有效提高YOLOv5的算法性能。  相似文献   

4.
本文提出了ATCSP-YOLOv5用于PCB中的小目标检测。将跨阶段局部网络(CSPNet)的思想和Transformer中多头自注意力机制(Multi-Head Attention)相结合,在YOLOv5的主干网络中加入多头自注意力跨阶段局部网络(ATCSP)模块。同时,在特征金字塔部分融合生成感受野更小的目标检测层,用于添加小目标探测头。除此之外,还使用了SRGAN和数据增强来扩充数据集,更好的实现了缺陷检测。在实验中ATCSP-YOLOv5的mAP@0.5为98.38%,相较于原始的YOLOv5s提升了3.06%,同时检测速度没有明显下降。  相似文献   

5.
针对无人机检测缺陷绝缘子时,存在目标特征不明显、小目标检测效果差、无法同时满足检测速度和精度的问题,提出一种基于改进YOLOv5的绝缘子缺陷检测算法。首先,针对目标特征不明显的问题,将ConvNeXt网络应用到YOLOv5主干网络中,以加强网络特征提取能力;其次,针对图像中的小目标特征,在主干网络中引入坐标注意力机制,提高对小目标的检测精度;然后,对改进模型进行剪枝操作,剪去模型中冗余的通道,从而减少模型参数量,使模型更加轻量化。实验结果表明:所提算法在绝缘子缺陷数据集IDID上的平均精度均值达到93.84%,较原始算法提升了3.4个百分点;检测速率达到166 frame/s,较原算法速率提升了69.4%,可以满足对输电线路实时检测的要求。  相似文献   

6.
针对传统PCB板检测方法中检测效率不高,检测精度较低等缺点,提出了一种改进YOLOv5模型的PCB板缺陷检测方法。为提升小目标缺陷检测精度,构建了基于BiFPN的网络连接方式,更加充分地利用了不同尺度的特征信息;为了更好地捕捉目标缺陷的位置,引入了Coordinate Attention注意力机制,使模型的定位和目标捕捉更加精准。实验结果表明,较原始的YOLOv5模型,所提出的针对PCB板表面缺陷检测方法的均值平均精度提高了3.2%。  相似文献   

7.
针对目前动车组(electric multiple units,EMUs) 关键部件缺陷检测模型复杂、小目标漏检率高和检测效率低的问题,提出一种基于改进YOLOv5的缺陷检测方法。该方法在利用生成对抗网络(generative adversarial network,GAN)进行数据增强的基础上,采用轻量级网络MobileNetV3-large对YOLOv5m主干网络进行替换,同时使用深度可分离卷积优化颈部3×3网络结构,以降低模型的参数量和计算量;在改进后的主干网络中引入坐标注意力机制(coordinate attention,CA),以捕获小目标的位置信息和通道信息,增强网络的特征表达能力;对非极大值抑制(non-max suppression,NMS)算法进行优化,融入重叠检测框中心点的位置信息,以提升预测框的定位准确性。在EMUs缺陷数据集上的实验结果表明,本文提出的检测模型相较于YOLOv5m,参数量减少了77%,计算量降低了80.9%,单张图片的检测时间减少了31.7%,平均精度均值(mean average precision,mAP)可达到0.804。另外,在NEU-DET数据集上的实验结果表明,改进后的模型也具有较强的泛化能力。  相似文献   

8.
针对初始的YOLOv5目标检测算法对复杂目标中的缺陷特征提取不充分、定位不精确、检测精度低和漏检率高等问题,提出了改进的YOLOv5钢材表面缺陷检测算法。在锚框计算上,用K-Means++算法进行锚框选取,使得随机选取的聚类中心尽可能的趋于全局最优解,预测框更加精准。添加CBAM注意力机制,对复杂图像中的缺陷赋予更高的权重,增强对关键信息的关注度。通过实验对比后结果表明,改进后YOLOv5算法拥有更好的检测性能。  相似文献   

9.
电致发光(EL)检测技术作为太阳电池和组件缺陷检测的重要手段被广泛运用,但是EL检查中的缺陷筛查仍然需要持续完善。为了克服以往研究中可识别缺陷的种类少、无法对缺陷进行定位、模型参数多体积大及检测速度慢的局限性,使用改进的YOLOv5网络对电致发光图片中常见的隐裂、断栅、裂片和黑斑4类主要缺陷进行检测和分类。使用Ghost模块代替YOLOv5骨干提取网络中的普通卷积模块,减少网络模型的参数量;为了保证良好的检测性能,在骨干网络尾端加入Squeeze-and-Excitation(SE)注意力模块,提升算法的目标检测能力;在特征融合网络中引入双向特征金字塔网络(BiFPN)结构,进一步加强网络的特征融合能力。结果表明,所提模型成功地识别和定位了4类常见的缺陷,与YOLOv5算法相比,模型体积减小了21%,在没有GPU加速的情况下,单张图片的检测速度提升了17.4%。  相似文献   

10.
针对工业中钢材出现多种小目标缺陷且对其检测精度低、误检率高等问题,文章提出了对单阶段目标检测算法网络5s版本(YOLOv5s)的锚框(Anchor)进行改进优化。由于钢材表面存在许多小目标缺陷,原始的YOLOv5s网络设定的Anchor并不适合对其进行检测,通过K-Means聚类算法和K-Means++聚类算法重新获得匹配小目标检测任务的Anchor。通过实验将其应用在钢材的数据集上,与原始的YOLOv5s网络进行对比,结果表明改进后的YOLOv5s网络检测小目标缺陷时收敛性更好,检测精度更高。  相似文献   

11.
印刷电路板 (printed circuit board,PCB)在实际生产过程中存在缺陷样式多种多样、缺陷小、缺陷位置难以定位的问题,而一个巨大的模型难以实现实时检测的要求,且大量的深度可分离卷积层建立的轻量级模型也不能达到足够的精度,为此提出一种基于YOLOv5s的PCB缺陷检测算法。 将原始Backbone的Conv模块跟C3模块用GhostConv替换,在Neck部分则引入了一种新的轻量级卷积技术GSConv,减轻模型大小的同时保持精度,GSConv在模型的准确性和速度之间完成了一个极好的权衡,针对许多注意力模块无法关注全局信息同时模型大的问题,提出了多尺度的轻量化双通道注意力模块(double channel depthwise attention module,DWAM),进一步提高模型精度。通过多组实验, 结果表明,改进算法所有类别的平均mAP为99.14%,且模型的GFLOPs为7.194 G,Params为7.175,原始的YOLOv5s平均mAP为96.86%,GFLOPs为6.89 G,Params为6.596,虽然Params以及GFLOPs有所增大,但是还是满足轻量网络的要求,并且精度相对于YOLOv5s提高了2.25%,且对于每个类别的缺陷识别准确率都有改善,大幅减少计算量和模型参数的同时保证了准确率,满足工业检测生产需求的同时便于移动端部署。  相似文献   

12.
针对遥感图像在复杂背景下因特征提取和表达能力不足而存在漏检和检测效果不佳的问题,提出一种优化特征提取网络的YOLOv4算法模型。该改进模型引入了一种新的Dense-PANet结构以获取更高的分辨率特征,并通过在特征提取网络中嵌入注意力机制以适应遥感图像因视野范围大而导致复杂背景下小目标漏检和检测效果不佳的问题。为了证明本文所提方法的有效性,针对DIOR遥感数据源进行了对比实验,结果表明,本文算法平均准确率(mean average precision,mAP)为86.55%,相比原算法提高了2.52%,较YOLOv3、RetinaNet提高了6.58%、14.09%,验证了所改进算法的有效性。  相似文献   

13.
唐纲浩  周骅  赵麒  魏相站 《光电子.激光》2021,32(11):1147-1154
针对当前目标检测算法网络复杂,对平台设备要 求高;而轻量化网络YOLOv3_Tiny对 压敏电阻表面缺陷的检测精度较低,容易出现漏检错检的情况,提出了基于YOLOv3_Tiny的 改进算法DAYOLOv3_Tiny。DAYOLOv3_Tiny构建了深度可分离卷积块替代标准卷积,使用卷积 操作进行下采样,使检测网络在减少网络参数量的同时增加了特征的提取;并在网络中引入 了通道注意力模块和空间注意力模块,增强了检测网络对重要特征信息的学习。在自制的压 敏电阻表面 缺陷数据集上进行实验,结果表明,DAYOLOv3_Tiny的mAP值为92.23%,较改进前 提升了12.25%;改进后的DAYOLOv3_Tiny模型大小为YOLOv3_Tiny的55.42%,仅18.9 MB。实验 表明,DAYOLOv3_Tiny对压敏电阻表面缺陷的检测精度较高,能够有效改善漏检错检的情况 ,且网络模型较小,对硬件平台要求不高,易于在性能受限的平台部署。  相似文献   

14.
缺陷检测是带钢生产过程中不可缺少的工序,现有检测方法普遍存在检测精度较低、实时性差等问题。为解决上述问题,本文提出了一种基于轻量化YOLOv3的快速缺陷检测方法。MobileNetv2作为主干网络并用两个尺度的特征图进行输出,保证了网络模型的轻量化;将改进后的注意力模块融合进特征金字塔网络(feature pyramid network, FPN),同时结合空间金字塔池化模块(spatial pyramid pooling, SPP),以提高算法对缺陷的学习能力;使用K均值聚类算法获得更优的先验框,并且使用CIoU(complete-intersection over union)对损失函数进行优化,进一步提升网络性能。提出的方法在带钢缺陷数据集上检测速度为70.8 FPS;模型参数量为7.1 MB,仅为YOLOv3的3.02%。实验结果表明本文所提方法能够在保证精度的同时实现对缺陷的快速检测,具有良好的生产线部署能力。  相似文献   

15.
基于YOLOv5网络模型的人员口罩佩戴实时检测   总被引:2,自引:0,他引:2  
近年来,随着硬件算力的提升和人工智能算法的创新发展,使得深度学习算法在目标检测方面有着广泛的应用.针对现有人工方式查看人员口罩佩戴情况的不足,提出了一种基于深度学习YOLOv5算法实现对口罩佩戴情况的实时检测.算法首先将数据集进行归一化处理,再将数据接入YOLOv5网络进行迭代训练,并将最优权重数据保存用作测试集测试,...  相似文献   

16.
现阶段我国主要靠人工对垃圾进行分拣,存在安全 系数低、效率低下等问题。传统目标检测方法针 对种类繁多,形态各异的垃圾目标不易设计特征,鲁棒性较差,为实现自然环境下垃圾的快 速精准识别, 本文提出一种基于深度学习的轻量级垃圾分类检测方法。该方法通过引入CIOU边框回归损 失函数来提高 回归框准确率;针对低功耗移动设备终端的部署,提出一种以YOLOv3目标检测算法为基础 ,结合 MobileNetV3的特征提取网络,对算法进行轻量化;在YOLO层加入GRU结构,利用多门控 循环神经网 络结构对YOLO层中不同大小的特征图建立记忆链接,对深层语义特征的向前融合过程进行 过滤和筛选, 使得特征融合效果更佳;使用迁移学习预训练的方式来提高模型的特征提取能力和泛化能力 。文本采用自 制的Garbage数据集对改进后的网络进行训练和测试,结果表明,本文提出的算法识别效果 显著,平均准 确率为90.50%,高于原YOLOv3网络的平均准确率86.30%,检测速度达到18帧/秒,满足实时检测的 需求。实验表明,改进后的网络模型能在保证检测准确率和速度的同时,有效降低模型参数 量,具有一定应用价值。  相似文献   

17.
何宇  李丹 《电子测试》2022,(2):46-48
随着中国城市商业和区域经济的快速稳步发展,中国在1969年所规划建成的第一条城市地铁——北京市中的地铁一号线,截止到2018年底,中国大陆中部地区目前共有185条已运营地铁线路,每日地铁的人流量也趋近天文数组,为了解决传统对人流量的统计需人工计算、耗时耗力、原始算法对密集分布小目标检测精度不高的缺陷,提出了一种基于基于YOLOv5和DeepSort的实时地铁人流量统计检测方法,在Pytorch框架上训练,可以实现行人实时检测与跟踪,统计视频内出现的总人数,对穿越黄线的行人进行计数统计。  相似文献   

18.
姚艺莲  裴东  蒲向荣 《光电子.激光》2023,34(11):1150-1157
针对火焰检测模型小目标检测能力差、模型体积大、计算复杂、难以部署到移动端设备的问题,提出了一种轻量化的DGC_YOLOv5 (you only look once v5)算法。本文首先调用k-means计算函数,计算出适合本文数据集的锚框尺寸;其次引入卷积块注意力机制(convolutional block attention module, CBAM),提高算法对小目标的检测能力;然后利用轻量型的Ghost模块对主干网络中的C3模块进行改进;最后利用深度可分离卷积(depthwise separable convolution, DS_Conv),用简单的线性计算代替复杂计算,降低模型复杂度,减小模型体积。实验表明,相比原始的YOLOv5算法,本文算法在测试集上的平均精度均值(mean average precision,mAP)可达到94.4%,比原始算法提高1.7个百分点,在视频测试集上平均检测速度可达到71 FPS,可以满足实时检测的要求,参数量和计算量分别减少为原来的41.2%和34.8%,模型大小减少8.4 M,便于后续移动设备端的部署。  相似文献   

19.
火灾会对人员与财产安全造成巨大危害,如何迅速、准确地检测火焰出现具有重要意义。为实现高大空间条件下火焰的准确识别,设计了一种具有二自由度、可全方位检测环境情况的红外摄像头,并结合深度学习对目标检测算法YOLOv5进行改进;利用K-Means聚类算法匹配出9个聚类中心宽高维度替换原网络anchor参数;考虑了目标框相对比例,对损失函数进行优化,并用于树莓派上实现火焰识别。测试结果表明:改进的YOLOv5算法在树莓派上单张检测耗时2.9 s,较无改进YOLOv5算法减少78%;系统查准率为100%,识别目标框置信度均在0.9以上,能够快速准确识别出火焰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号