首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
通过热压缩模拟试验研究了Al-xMg-2.8Zn合金在变形温度为300~490 ℃、应变速率为0.001~5 s-1条件下的热变形行为。修正了应变-应力曲线中由于变形热引起的流动软化现象后,利用Arrhenius本构方程和热加工图预测并分析了Al-xMg-8Zn合金的热变形行为。结果表明,随着Mg含量的增加,应变速率的升高,或者变形温度的降低,流变应力随之增大。结合热加工图和微观组织观察,确定了合金的最佳热加工参数范围。通过对比发现,随着Mg含量的增加,最佳热变形温度和应变速率范围均变大,变形失稳区域向高温和低应变速率区域扩展。  相似文献   

2.
采用等温压缩分析了Fe0.25Cr0.25Ni0.25Mn0.25中熵合金在900~1050 ℃、0.001~1 s-1应变速率范围内的流变行为。结果表明,热变形以动态再结晶为主,与其他低堆垛层错能的合金一样,流变曲线呈单峰形状。建立了本构模型来描述整个变形过程,分析了加工硬化行为和动态软化过程。利用Kocks-Mecking图发现,在加工硬化阶段,合金的硬化速率随应力呈线性降低,因此应力-应变行为可以用传统的位错密度模型来描述。同时,采用经典的JMAK方程描述由动态再结晶引起的软化过程。此外,对本构模型进行了进一步的修改,减少了参数的数量,简化了回归分析。所提出的半物理模型不仅可以准确地预测应变范围外的应力-应变行为,而且可用于其他低层错能合金。  相似文献   

3.
通过高温等温压缩试验,对Cu-Cr-Zr-Ti合金在700~900℃,应变速率0. 01~10 s-1的条件下高温热变形行为进行了研究。结果表明:合金的流变应力随温度的升高而减小,随应变速率的升高而增加。根据动态材料模型绘制了合金的热加工图,得到合金的最佳热加工参数为:温度900℃,应变速率0. 01 s-1。同时使用Johson-Mehl方程计算动态再结晶的体积分数,与EBSD测定的试验结果相近,表明Johson-Mehl方程在Cu-Cr-Zr-Ti合金中也具有适用性。  相似文献   

4.
5.
采用等温压缩实验,对FeCrNiMn等原子比高熵合金在900~1050 ℃和0.001~1 s-1区间内的热变形行为进行了研究。结果表明,合金的初始组织主要由等轴面心立方晶粒和细小体心立方相颗粒构成。合金的流变曲线呈现典型的单峰形,随着温度的提高和应变速率的降低,峰值应力显著下降。基于双曲正弦方程建立了预测流变应力的本构模型,同时计算了合金的应力指数和表观变形激活能,分别为3.13和405 kJ/mol。基于动态材料模型建立了合金在不同应变量下的热加工图,发现所有热加工图中均未出现变形失稳区,说明合金具有优异的变形能力。通过与变形组织的对比发现,变形组织与能量耗散因子值密切相关。当能量耗散因子值为28%时,再结晶体积分数仅为17.6%;当能量耗散因子值为38%时,再结晶体积分数则提高至37.5%。通过热加工图确定了合金的2个最佳热变形参数区间:900~940 ℃/10-3~10-1.3 s-1和960~1050 ℃/10-3~10-0.3 s-1。  相似文献   

6.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

7.
为了研究双相高熵合金(HEA)在高温变形过程中的微观组织演变,在900至1050 ℃的温度下进行了不同应变速率的压缩试验。选择了4种典型的流动曲线,并对相应的微观组织进行了分析,以研究双相HEA的动态再结晶(DRX)和织构演变。结果表明,在应变速率为0.1和0.01 s-1时,变形试样的流动曲线完全不同。力学流动曲线的差异与DRX和织构演化过程有关。在1050 ℃和0.1 s-1下压缩后,获得了结合<110>和<100>的双组分组织结构,这是因为高温下扩散控制的溶质阻力占主导地位。此外,bcc相的影响依赖于界面边界和颗粒周围的应变不均匀性,因为没有发生相变,大部分应变由fcc相容纳。  相似文献   

8.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

9.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

10.
近年来,高熵合金凭借其新颖的设计理念和优异的各类物化性能成为金属结构材料领域的研究热点。随着轻量化合金设计理念的不断普及,“熵调控”的概念也被广泛应用于开发新型轻质合金。轻质高熵合金是基于合金轻量化设计的一类低密度的新型高熵合金,其开发与设计主要利用经验参数准则、相图计算以及第一性原理计算相结合的方法。其中,Al-Ti-V基轻质高熵合金凭借其优异的力学性能、良好的高温抗氧化性及耐腐蚀性等优点,受到了广泛关注。本文基于Al-Ti-V基轻质高熵合金的研究现状,从成分设计、制备方法、结构特征以及各类物化性能特点等方面进行了综述,并指出了Al-Ti-V基轻质高熵合金所面临的问题与挑战。  相似文献   

11.
通过热模拟压缩试验研究了燃料包壳用FeCrAl合金在形变温度为800~1000℃、应变速率为0.001~1s~(-1)工艺条件下的热变形行为,采用Arrhenius双曲线正弦函数模型建立了FeCrAl高温变形本构方程,结合动态材料模型绘制了FeCrAl在应变量为0.05~0.8的热加工图。结果显示,FeCrAl流变应力随着变形温度的升高而降低、随着应变速率的升高而增大,变形温度与应变速率均会影响其组织演化。根据热加工图,FeCrAl流变失稳区随着应变量的增加先扩展后趋于稳定,其最佳热加工工艺参数确定为:应变量ε=0.1时,应变速率e0.008 s~(-1)、变形温度为880~1000℃;应变量ε≥0.3时,应变速率e0.027 s~(-1)、变形温度950℃。  相似文献   

12.
采用Gleeble 3500D热模拟试验机对TC17钛合金进行了高温压缩试验。其变形温度为973~1223 K,应变速率为0.001~10 s~(-1),应变0.9。结果表明:TC17钛合金高温流变应力对应变速率和变形温度非常敏感。在温度为1123,1183和1223 K,应变速率为10 s~(-1)时,TC17钛合金的流动应力出现了明显的应力不连续屈服现象。利用Zener-Holloman参数建立了TC17钛合金的高温本构方程,与试验结果对比表明:该方程可以准确地描述TC17钛合金的的高温流动行为。基于动态模型,建立了TC17钛合金的热加工图,并结合微观组织分析验证了加工图的准确性。  相似文献   

13.
多主元高熵合金涂层的研究进展   总被引:1,自引:4,他引:1  
彭佳  颜子博 《表面技术》2013,42(6):73-77
综述了高熵合金涂层的设计理念、制备方法和性能研究的进展。 介绍了高熵合金金属涂层、化合物涂层和复合涂层的性能特点。 高熵合金涂层表现出高强度、高硬度、耐高温、耐磨性和耐腐蚀等优异性质,有望在工具、刀具、模具等方面得到应用。  相似文献   

14.
Zr-4合金的热变形和加工图   总被引:1,自引:0,他引:1  
在Gleeble-1500热/力模拟机上对Zr-4合金进行了热压缩试验,研究了其在温度750℃-950℃和应变速率0.005s^-1~50s^-1条件下的热变形行为。结果表明:热变形过程的流变应力可用双曲正弦本构关系来描述,平均激活能为377.79kJ/mol。根据材料动态模型,计算并分析了Zr-4合金的加工图。利用加工图确定了热变形的流变失稳区,并且获得了试验参数范围内的热变形过程的最佳工艺参数,其热加工温度930℃~950℃,应变速率为0.05s^-1~0.8s^-1和10s^-1-30s^-1的2个区域。  相似文献   

15.
采用真空电弧炉在氩气保护下熔炼Al0.5Cr Co Fe Ni高熵合金,在不同温度(800~1100℃)下进行100 h的高温氧化实验,测定其氧化动力曲线,采用X射线衍射仪和扫描电镜等方法分析氧化层结构和形貌。结果表明:Al0.5Cr Co Fe Ni高熵合金在800和900℃形成的氧化膜较完整且致密,具有较为优异的抗氧化性能。在1000和1100℃形成的氧化膜较厚,膜内有大量裂纹与孔洞,抗氧化性能较差。氧化初期,界面反应起主导作用,随着氧化膜的生长,扩散过程发挥越来越重要的作用,成为继续氧化的控制因素,以致一种或多种合金元素氧化物在表面析出,形成尖晶石类内层氧化物Ni Cr2O4、Co Cr2O4、Fe(Cr,Al)2O4内氧化层。在高温氧化过程中,N2会参与反应,与Al发生较强反应,生成Al N颗粒,进一步的氧化过程使Al N再次氧化,N2逃逸,留下具有Al N外形的空洞。  相似文献   

16.
AZ80合金高温变形行为及加工图   总被引:6,自引:0,他引:6  
为实现AZ80合金塑性成形的数值模拟和制定其合理的热加工工艺,利用热模拟机对AZ80合金进行不同变形温度和应变速率的高温压缩变形行为研究.结果表明:AZ80合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的AZ80合金高温变形的本构模型较好地表征其高温流变特性,模型计算精度高;同时,利用建立的AZ80合金的DMM加工图分析其变形机制和失稳机制,从提高零件力学性能角度考虑,可以优先选择变形温度为300~350 ℃、应变速率为0.001~0.01 s-1的工艺参数.  相似文献   

17.
介绍基于加工图理论的各种塑性失稳准则,比较分析各个准则的区别,以及各参数的物理意义,并以Ti2AlNb基合金为研究对象建立Prasad、Murty、Gegel和Malas准则的热加工图.结合试验结果分析和对比4种塑性失稳准则下加工图的区别发现:Prasad和Murty准则的塑性失稳图相似,均位于高应变速率区,且Murty准则的塑性失稳区稍窄;Gegel和Malas准则的塑性失稳图相似,塑性失稳区比Prasad和Murty准则的明显偏大,除高应变速率外,还能预测高温低应变速率的塑性失稳现象;解释可能出现各种失稳现象的原因,并结合各种塑性失稳准则提出判断材料塑性变形失稳的选用原则.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号