首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
目标检测是自动驾驶的重要前提,是与外界信息交互的重要环节。针对夜间远处行人检测识别精度低、漏检的问题,提出一种针对检测小尺寸行人的YOLOv5-p4的夜间行人识别模型。首先,通过增加更小目标的检测层,引入BiFPN特征融合机制,防止小目标被噪声淹没,使网络模型可以更聚焦于物体的细小特征;同时使用K-means先验框聚类出更小目标的锚框,并且使用了多尺度的数据增强方法,增加模型的鲁棒性。使用了MetaAcon-C激活函数与EIoU回归损失函数使模型收敛效果更好,提升了算法远距离行人的检测的准确率。最后在红外行人数据集FLIR上验证改进后的YOLOv5-p4模型对于行人的检测能力,实验结果表明该方法与传统方法相比,准确率从86.9%提升到90.3%,适合用于红外图像中的行人检测。  相似文献   

2.
在夜视红外行人检测的定位任务中,样本取样机器处于高点俯拍,使得所拍摄到的行人目标体积较小.此外,行人时刻处于活动状态,与摄像头的距离不同,导致检测时同类目标在图中的大小有一定的差异.基于YOLOv4算法,本文提出了一种改进的YOLOv4红外行人检测算法,对YOLOv4的网络结构进行了优化.采用形变卷积为核心组件,构建形变特征提取模块提升对于目标特征提取的有效性;针对形变卷积对特征提取网络模块进行优化.结果表明,改进后的算法在整体鲁棒性、召回率、F1-Score等评价指标方面均优于其它算法.  相似文献   

3.
使用搭载YOLOv5算法的无人机对物体进行目标检测时,由于其权重文件占有较大内存而要求无人机有较高的硬件配置,这在很大程度上约束了无人机进行目标检测的发展。为了解决这一问题,提出了一种改进的YOLOv5算法。使用深度可分离卷积代替普通卷积层,以使YOLOv5s轻量化。由于无人机从空中俯瞰物体,拍摄的图片具有较大的视野,因此将Dropblock与注意力机制添加至YOLOv5s主卷积层的底层来增加YOLOv5s的泛化能力与识别能力,进而提高YOLOv5s的小目标检测能力。使用所提方法对车辆数据集进行训练,获得了83%的训练准确率,并通过对比试验证明了所提方法比原始YOLOv5s具有更强的小目标检测能力。  相似文献   

4.
针对YOLOv5s模型参数量大、难以在嵌入式设备上部署的问题,设计了一种轻量化的YOLOv5s带钢表面缺陷检测方法。首先将主干网络中的部分卷积层替换为多分枝结构的RepGhost,增强了主干对特征信息的提取能力,推理时可以转化为单分支结构,保证了检测速度。其次提出了一种轻量级的FPN网络(GG-FPN),其中的G-Ghost用于削减C3模块中的冗余参数,而GSConv则利用大卷积核的深度可分离卷积和分支结构,保证精度和速度的双提升。实验表明,在NEU-DET数据集上,GG-FPN模型参数量较原FPN减少了24.7%,GFLOPs降低了20.6%。对 于整个模型,改进的算法mAP仅损失1.9%,参数量较YOLOv5s减少了37.5%,GFLOPs降低了33.1%,检测速度达到187 frame/s,更好地均衡了检测的速度与精度。  相似文献   

5.
针对无人机检测缺陷绝缘子时,存在目标特征不明显、小目标检测效果差、无法同时满足检测速度和精度的问题,提出一种基于改进YOLOv5的绝缘子缺陷检测算法。首先,针对目标特征不明显的问题,将ConvNeXt网络应用到YOLOv5主干网络中,以加强网络特征提取能力;其次,针对图像中的小目标特征,在主干网络中引入坐标注意力机制,提高对小目标的检测精度;然后,对改进模型进行剪枝操作,剪去模型中冗余的通道,从而减少模型参数量,使模型更加轻量化。实验结果表明:所提算法在绝缘子缺陷数据集IDID上的平均精度均值达到93.84%,较原始算法提升了3.4个百分点;检测速率达到166 frame/s,较原算法速率提升了69.4%,可以满足对输电线路实时检测的要求。  相似文献   

6.
针对海面目标检测模型难以应用在存储能力和计算能力较小的移动端的问题,提出一种基于改进YOLOv5的海面目标检测算法。采用轻量级提取网络ShuffleNetv2 Block作为YOLOv5网络的骨干部分,减少模型计算量和参数量;使用加权双向特征金字塔网络模块替换原特征融合网络模块,提高网络对不同尺度的特征提取能力;引入坐标注意力机制,提高模型检测精度。在海面目标数据集上进行实验,结果表明:与YOLOv5模型相比,改进模型的精确率、召回率、平均精度分别提高了1.2%、1.4%、0.9%,计算量和参数量分别降低了55.8%,54.9%。改进后的YOLOv5模型不仅提高了检测精度和模型性能,还压缩了模型的计算量和参数量,有利于部署在移动设备端。  相似文献   

7.
针对红外图像分辨率低、背景复杂、目标细节特征缺失等问题,提出了一种基于YOLOv5s的改进实时红外小目标检测模型Infrared-YOLOv5s。在特征提取阶段,采用SPD-Conv进行下采样,将特征图切分为特征子图并按通道拼接,避免了多尺度特征提取过程中下采样导致的特征丢失情况,设计了一种基于空洞卷积的改进空间金字塔池化模块,通过对具有不同感受野的特征进行融合来提高特征提取能力;在特征融合阶段,引入由深到浅的注意力模块,将深层特征语义特征嵌入到浅层空间特征中,增强浅层特征的表达能力;在预测阶段,裁减了网络中针对大目标检测的特征提取层、融合层及预测层,降低模型大小的同时提高了实时性。首先通过消融实验验证了提出各模块的有效性,实验结果表明,改进模型在SIRST数据集上平均精度均值达到了95.4%,较原始YOLOv5s提高了2.3%,且模型大小降低了72.9%,仅为4.5 M,在Nvidia Xavier上推理速度达到28 f/s,利于实际的部署和应用。在Infrared-PV数据集上的迁移实验进一步验证了改进算法的有效性。提出的改进模型在提高红外图像小目标检测性能的同时,能够满足实时性要...  相似文献   

8.
针对目前主流的目标检测算法存在模型参数过大、不能很好地移植到移动设备端之中应用于辅助驾驶这一问题,本文提出了一种改进YOLOv5s的目标检测算法。首先,将YOLOv5s算法的主干网络CSPDarknet替换为轻量化网络模型MobileNet-V3,解决了网络模型较大、参数较多的问题,减少了网络的深度并提升了数据推断速度;其次,对特征提取网络采用加权双向特征金字塔结构Bi-FPN加强特征提取,融合多尺度特征进而扩大感受野;最后,对损失函数进行优化,使用CIoU为边界框回归损失函数,改善模型原始GIoU收敛速度较慢问题,使预测框更加符合于真实框,同时降低网络训练难度。实验结果表明,改进后算法在KITTI数据集上的mAP相较于YOLOv5s、SSD、YOLOv3、YOLOv4_tiny分别提升了4.4、15.7、12.4、19.6,模型大小相较于YOLOv5s与轻量级网络YOLOv4_tiny分别减少了32.4 MB和21 MB,同时检测速度分别提升了17.6%与43%。本文改进后的算法满足模型小、精确度高的要求,为辅助驾驶中道路目标检测提升检测速度与精度提供了一种解决方案。  相似文献   

9.
由于盲人缺乏视觉感知能力,因此在户外独立出行时具有较大的风险。为了增强盲人户外场景下的环境感知能力,本文针对导盲系统的实际应用,提出一种基于YOLOv5s改进的导盲系统障碍物检测算法。首先,为了降低整体模型的计算量,使用MobileNetV3代替原网络的主干特征提取网络;然后,引入CA注意力机制使模型更好地关注训练过程中的有效特征;最后,采用EIoU边界框损失函数替换原模型的CIoU,优化了预测框的回归速度与精度。在服务器上进行模型验证,实验结果表明本文所提算法相较原模型计算量降低了59%,参数量降低了49.3%,同时mAP提高了2.3%,具有一定的实用价值。  相似文献   

10.
地铁场景行人目标存在大小不一、不同程度遮挡以及环境过暗导致目标模糊等问题,很大程度影响了行人目标检测的准确性。针对上述问题,本研究提出了一种改进YOLOv5s目标检测算法以增强地铁场景行人目标检测的效果。构建地铁场景行人数据集,标注对应标签,进行数据预处理操作。本研究在特征提取模块中加入深度残差收缩网络,将残差网络、注意力机制和软阈值化函数相结合以增强有用特征信道,削弱冗余特征信道;利用改进空洞空间金字塔池化模块,在不丢失图像信息的前提下获得多尺度、多感受野的融合特征,有效捕获图像全局上下文信息;设计了一种改进非极大值抑制算法,对目标预测框进行后处理,保留检测目标最优预测框。实验结果表明:提出的改进YOLOv5s算法能有效提高地铁场景行人目标检测的精度,尤其对小行人目标和密集行人目标的检测,效果提升更为显著。  相似文献   

11.
受热红外成像方式限制,交通场景下红外图像存在对比度低、目标尺度和姿态的多样性以及目标之间的相互遮挡问题,从而造成检测精度下降,部分目标出现漏检、误检的情况。本文在YOLOv5s的基础上提出一种改进算法:在数据处理方面,使用AHE算法对训练集图像进行部分数据增强;在模型改进方面,通过引入跨域迁移学习策略、插入通道注意力机制SENet、改进损失函数GIoU为α-CIoU对YOLOv5s进行改进。并通过消融实验的方式,在自制数据集上对夜间道路环境下的电动自行车驾驶行为进行检测。实验结果表明,改进后的算法对单人驾驶电动自行车行为检测的平均精度达到了95.9%,比YOLOv5s的检测精度提高了3.1%;对载人驾驶电动自行车行为检测的平均精度达到了88.4%,比YOLOv5s的检测精度提高了9.5%;总类别检测的平均精度达到了92.2%,比YOLOv5s的检测精度提高了6.4%,有效降低了红外目标漏检、误检的概率。  相似文献   

12.
面对印刷电路板(print circuit board,PCB)小型化、多层化、高集成化的趋势,针对目前PCB缺陷检测方法存在漏检、特征提取困难、误检率高以及检测性能差等问题,本文提出了基于改进YOLOv5算法的PCB小目标缺陷检测方法。该方法先针对PCB小目标缺陷特点采用DBSCAN(density-based spatial clustering of applications with noise) +二分K-means聚类算法以找到更适合的锚框;然后对YOLOv5的特征提取层、特征融合层以及特征检测层进行改进,增强关键信息的提取,加强深层信息与浅层信息的融合;从而减少PCB缺陷的误检率、漏检率,以提高网络的检测性能;最后在公开PCB数据集上进行相关对比实验。结果表明,改进后模型的平均精度(mAP)为99.5%,检测速度为0.016 s。相比于Faster R-CNN、YOLOv3、YOLOv4网络模型,检测精度分别提升了17.8%、9.7%、5.3%,检测速度分别提升了0.846 s、0.120 s、0.011 s,满足PCB缺陷在实际工业生产现场的高精度、高速度检测要求。  相似文献   

13.
为了解决传统潜艇目标检测缺乏对复杂背景和噪声的鲁棒性、对光照变化和视角变化敏感、难以处理大规模数据集等问题,提出了一种基于改进YOLOv5潜艇目标检测器。通过C3_Transformer结构,有效提升了特征的全局上下文建模能力和长距离依赖性捕捉能力;通过simOTA解决anchorbased算法中正负样本不平衡问题,增强模型对小目标和困难样本的学习能力;利用decoupledhead的思想解决分类和位置预测任务的互斥性问题,提高检测精度和鲁棒性。实验结果表明:相较于原始YOLOv5,改进后的模型Precision、Recall、mAP05、mAP 05∶095分别提高了28、109、38、147,这表明改进后的模型在潜艇目标检测的准确性、召回率以及在不同置信度阈值下的平均准确率等方面取得了明显的进步,同时在实际检测任务中改进后的模型有效解决了“漏检”、“误检”的问题。  相似文献   

14.
随着现代化战争的技术升级,机载红外探测领域对更快更远更准地发现目标的需求日益强烈。为满足机载环境下对红外弱小目标高精度高帧率的检测,本文提出了一种基于YOLOv7改进的目标检测算法,以YOLOv7目标检测算法为基础,进行了修改网络结构和加深卷积层数来使特征提取更多的小目标信息特征;并对骨干网络获取的特征层引入注意力机制来提高神经网络对小目标的感知能力以及提高小目标所在区域的权重占比;使用EIOU损失函数替换原本的CIOU损失函数,提高了收敛速度和定位精度。实验结果表明,相较于原算法YOLOv7,在极小损失帧率的情况下,改进后的算法mAP可以达到9849,相较原始算法提升了124,有助于提升对机载红外弱小目标的检测准确率。  相似文献   

15.
铸件缺陷检测是一项重要的质量管理程序。为了避免人为因素的影响,提高检测精度,对YOLOv5s6的目标检测算法进行改进,用于X射线图像的铸件缺陷检测。首先设计了一种C3CA模块用于捕获跨通道、方向感知和位置感知的信息。然后通过在骨干网络中融合多头自注意力机制来捕获局部与全局信息。最后采用Focal-EIoU Loss损失函数。实验结果表明:在相同训练条件下,改进后YOLOv5s6的AP50值达到了90.2%,F1因子达到了87.8%,相较原始模型分别提高了3.4%和2.3%,具有检测准确率高、实时性强等特点。  相似文献   

16.
为了提升目标检测算法在多尺度学习方面的能力,尤其是对小目标的检测能力,本文提出了一种基于改进YOLOv5的超分辨率和多尺度融合目标检测算法。首先,该算法使用子像素卷积代替原YOLOv5模型的上采样操作,提高图像的分辨率,并尽可能保留小目标的信息。其次,使用并行快速多尺度融合(parallel fast multi-scale fusion,PFMF)模块实现深层特征和浅层特征的双向融合,将原YOLOv5算法的3尺度预测升级为4尺度预测,以此提高模型多尺度特征学习能力和对小目标的检测效果。实验结果表明,与YOLOv5s相比,改进后的模型在PASCAL VOC数据集中,mAP@0.5提高了2.8个百分点,mAP@0.5∶0.95提高了3.5个百分点;在MS COCO数据集中,mAP@0.5提高了4.3个百分点,mAP@0.5∶0.95提高了5.2个百分点。改进后的 YOLOv5模型在多尺度检测,尤其是小目标的检测效果方面得到了提升,并具有一定的应用价值。  相似文献   

17.
为了提升汽车辅助驾驶系统对前方车辆的检测效果,进一步获取精确的距离信息,本文提出一种改进的YOLOv5s的目标车辆检测算法,并用双目对前方车辆进行测距。以YOLOv5s(you only look once v5s,YOLOv5s)检测网络为基础,首先在网络中引入卷积注意力模块(convolutional block attention module, CBAM)有效提取检测目标的轮廓特征;其次将Neck中PANet网络替换为BiFPN提升特征的融合能力,使用DIoU优化损失函数,增强对车辆检测的准确性;采用SURF算法进行立体匹配,并对特征匹配点进行约束获得最优视差值,最后通过双目视觉测距原理求得前车距离信息。测试表明,在20 m的距离范围内,车辆识别率准确率为92.1%,提升了1.54%,测距平均误差率为2.75%。  相似文献   

18.
Aiming at the problem of low detection accuracy of vehicle and pedestrian detection models, this paper proposes an improved you only look once v4 (YOLOv4)-tiny vehicle and pedestrian target detection algorithm. Convolutional block attention module (CBAM) is introduced into cross stage partial Darknet-53 (CSPDarknet53)-tiny module to enhance feature extraction capabilities. In addition, the cross stage partial dense block layer (CSP-DBL) module is used to replace the original simple convolutional module superposition, which compensates for the high-resolution characteristic information and further improves the detection accuracy of the network. Finally, the test results on the BDD100K traffic dataset show that the mean average precision (mAP) value of the final network of the proposed method is 88.74%, and the detection speed reaches 63 frames per second (FPS), which improves the detection accuracy of the network and meets the real-time detection speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号