首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
针对现有的遥感图像目标检测方法中对小尺寸飞机目标的检测精度不高、特征信息传递不准确、信息交互不充分等问题,提出了一种基于可辨别特征提取和上下文感知的遥感图像飞机目标检测方法。设计了以可辨别特征提取模块为主体的主干网络,用以加强对多尺度飞机目标的特征提取;引入自适应特征增强模块,选择性关注小目标、优化特征信息的传递与信息交互;并设计了特征融合上采样模块对特征图进行上采样操作,用以提升高层语义信息的准确性。在DOTAv1数据集上的检测精度达到了95.2%,相较于YOLOv5s、SCRDet、ASSD等主流算法,飞机目标的检测精度提高了3.7%~18%。此外,该方法的检测速度以及模型参数量分别为147 fps和13.4 M,相较于当前主流算法具备较强的竞争力,满足在遥感背景下对飞机目标的实时检测需求。  相似文献   

2.
刘涛  张涛 《电子测量技术》2022,45(16):61-70
针对印刷电路板表面面积小而且上面电子器件焊点众多,传统检测方法很难进行有效检测的问题,提出了一种基于GhostNet-YOLOv4的印刷电路板表面焊点检测算法。首先,修改了YOLOv4算法的主干网络以增强特征提取能力,其次加入注意力机制使网络更注重缺陷特征,用GhostNet代替CSPDarknet53作为主干网络。此算法相比于传统的印刷电路板检测算法提高了检测精度和检测速度,可以实现对印刷电路板表面常见的断路、漏焊、短路等缺陷的精确检测和迅速分类。通过对印刷电路板数据集的检测结果分析表明,该改进算法具有较好的实用性,在测试集上的平均精度为86.68%,FPS达到了25.43,可以满足印刷电路板实际检测需求。  相似文献   

3.
针对平板陶瓷膜表面缺陷实时检测时存在检测准确率较低的问题,本文提出了一种融合坐标注意力和自适应特征的YOLOv5陶瓷膜缺陷检测方法。通过在原有YOLOv5模型的主干网络中加入坐标注意力机制,建立位置信息和通道之间的关系,从而更准确地获取感兴趣区域。在原始网络的预测网络中融入自适应特征融合机制,提高模型对多尺度缺陷的检测能力。将空洞空间卷积池化金字塔模块替换原始网络中的空间金字塔池化模块,提高卷积核视野获取更多的有用信息。实验结果表明:本文模型平均精度为97.8%,检测帧数为32 FPS,平均精度与原始YOLOv5模型相比提高了5.5%。本文提出的模型在满足平板陶瓷膜缺陷的实时检测条件下,提高了模型的检测准确率,对推动平板陶瓷膜缺陷检测的发展具有一定的参考价值。  相似文献   

4.
针对现有绝缘子缺陷检测模型检测精度低、实时性差和网络参数多的问题,提出了一种基于YOLO v4改进的绝缘子缺陷检测模型。首先,利用改进的VGG卷积神经网络实现了主干特征提取。其次,在加强特征提取网络和预测网络中引入深度可分离卷积,降低了模型的复杂度。再次,在加强特征提取网络中融合通道注意力机制对重要特征进行增强,提升了模型对绝缘子缺陷的目标辨识能力。最后,以平均精度、帧率、参数量等作为评价指标,对基于公共数据集CPLID构建的新数据集进行了消融实验和对比实验。实验结果表明,改进的YOLO v4模型对绝缘子缺陷的检测精度为98.35%,相比于传统的YOLO v4模型提高了6.4%,并且其检测速度和参数量分别为传统YOLO v4模型的1.5倍和37.5%,可实现对航拍绝缘子缺陷图像的高精度实时有效检测。同时,改进的模型相比YOLO v5-M和Faster R-CNN模型在检测精度,速度和模型复杂度上也更具优势。  相似文献   

5.
针对目前金属齿轮端面结构复杂,导致缺陷的小目标占比度高和尺度变化大引起的检测准确度低,难以满足企业实时 在线检测需求等问题。 本文基于 YOLOv5s 网络提出了一种基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法 (YOLO-Gear)。 首先,搭建了一个齿轮端面缺陷检测试验台,并制作了齿轮端面缺陷数据集。 然后,提出了自适应卷积注意力 模块(convolutional block attention module-C3,CBAM-C3),CBAM-C3 通过将通道注意力(channel attention module,CAM)和空间注 意力(spartial attention module,SAM)相结合加强了对金属齿轮缺陷小目标缺陷自适应的特征学习与特征提取,及时对模型中的 权重参数进行学习和优化,提高了模型对小目标缺陷的检测准确度;最后,提出了重复加权双向特征金字塔网络( bidirectional feature pyramid network,BiFPN),通过自适应控制不同尺度的特征图之间的融合程度,提高了模型对缺陷多尺度检测能力。 试 验表明,YOLO-Gear 模型在齿轮端面缺陷测试集上的平均精度达到了 99. 2%,F1 值为 0. 99,FPS 值为 33。 相较于其他深度学习 模型,本文提出的 YOLO-Gear 模型提高了检测的精度和效率,能够满足企业的实时在线检测需求。  相似文献   

6.
李大华  徐傲  王笋  李栋  于晓 《电子测量技术》2023,46(23):112-119
为解决印刷电路板缺陷检测中缺陷类别易混淆,缺陷目标微小难以检测的问题,提出了一种改进的YOLOv5检测模型。在骨干网络引入Swin-Transformer架构,获取局部和全局信息的多尺度特征。增加一个针对小目标的预测特征层,新的多尺度特征融合和检测结构使模型学习更加全面的特征信息。使用ECIoU_Loss作为损失函数,实现电路板缺陷检测速度和准确率协同优化。实验结果表明,改进后的YOLOv5模型在PCB Defect数据集上的平均准确率为98.7%,达到了99.7%的预测精确率和97.4%的召回率,比当前主流的检测模型性能更优越,改进后的YOLOv5模型能更有效的对电路板缺陷进行分类和定位。  相似文献   

7.
受工作环境恶劣等原因影响,风机叶片常会出现裂纹、凹坑等缺陷。针对当前常用目标检测算法对风机叶片小尺寸缺陷检测准确率低的问题,提出一种基于EfficientDet算法的风机叶片缺陷检测方法。首先采集图像数据并建立Pascal VOC格式的风机叶片缺陷图像数据集,然后对EfficientDet算法中的主干特征提取网络进行改进,减少向下采样次数并调整有效特征层从而增强主干特征提取网络对小尺寸缺陷的检测能力,同时为特征融合网络增加融合路径提升算法的多尺度特征融合能力,选用FReLU作为激活函数实现像素级空间信息建模,并通过Mosaic数据增强和Focal Loss损失函数增加小尺寸缺陷样本对于检测器的贡献。在建立的风机叶片缺陷图像数据集上的测试结果表明改进后的算法模型平均类别精度达到了96.15%,相较于原版的EfficientDet提升了3.77%,对小目标的检测性能有明显提升。  相似文献   

8.
带钢表面缺陷检测已成为保证带钢生产质量的重要环节之一。 针对当前带钢缺陷检测算法精度有待提高等问题,提出 了一种基于 YOLOv5 网络改进的算法模型 MT-YOLOv5。 首先在主干网络中引入 Transformer 自注意力机制,使主干网络更聚焦 于图像全局特征信息的提取;其次采用 T-BiFPN 网络结构,将 Transformer 层与 BiFPN 网络结构相结合,进一步增强了图像浅层 特征信息与深层特征信息的融合;然后引入改进后的轻量化网络 RepVGG 替换主干网络中的部分卷积层,增强主干网络的特征 提取能力;最后增加预测层,检测不同尺度的目标。 实验结果表明,MT-YOLOv5 算法在 NEU-DET 数据集上的均值平均精度 (mAP)达到了 82. 4%,较原 YOLOv5s 算法提高了 5. 3%,检测速度为 65. 4 fps,更好地均衡了检测速度与检测精度。  相似文献   

9.
为了提高 CenterNet 无锚框目标检测网络的目标检测能力,提出一种基于注意力特征融合和多尺度特征提取网络的改 进 CenterNet 目标检测网络。 首先,为了提升网络对多尺度目标的表达能力,设计了自适应多尺度特征提取网络,利用空洞卷积 对特征图进行重采样获取多尺度特征信息,并在空间维度上进行融合;其次,为了更好地融合语义和尺度不一致的特征,提出了 一种基于通道局部注意力的特征融合模块,自适应地学习浅层特征和深层特征之间的融合权重,保留不同感受域的关键特征信 息。 最后,通过在 VOC 2007 测试集上对本文算法进行验证,实验结果表明,最终算法的检测精度达到 80. 94%,相较于基线算法 CenterNet 提升了 3. 82%,有效提升了无锚框目标检测算法的最终性能  相似文献   

10.
为了解决矿井复杂环境下,缺陷特征提取不充分问题,融合特征增强和级联注意力机制提出一种快速智能的罐道缺陷识别算法RDM-YOLOv5,旨在解决人工巡检效率低的现状。首先,为了提高主干网络特征图信息表征能力,设计特征增强模块RLKM,它通过重参数化大内核卷积增强主干网络对目标特征的提取能力,并且有效降低模型参数量;然后,经过主干网络提取到高低层级特征后,由设计的级联注意力机制DCAM进一步挖掘缺陷目标的深层语义信息,显著增强小目标的特征信息;最后,为提升检测精度的同时保障检测网络的轻量化,在特征增强网络中引入轻量级卷积GSConv,在保持模型检测准确性的同时降低计算成本。实验结果表明,相较于YOLOv5s, RDM-YOLOv5的检测精度和速度分别提高3.7%、11.4%,模型参数量减少15.4%。它能基本满足实际应用中精准识别和快速定位罐道表面缺陷的需求。  相似文献   

11.
针对电力设备背景复杂、小目标密集等特点导致无人机智能电力巡检精度低、效果不佳等问题,提出了一种改进YOLOv5的目标检测算法。首先在原模型上增加一层检测层,重新获取锚点框以便能更好地学习密集小目标的多级特征,提高模型应对复杂电力场景的能力;其次对模型的特征融合模块PANet结构进行改进,通过跳跃连接的方式融合不同尺度的特征,增强信息的传播与重用;最后结合协同注意力模块设计主干网络,以聚焦目标特征,增强复杂背景中密集目标区域的显著度。实验结果表明:所提算法的平均精度均值(IoU=0.5)达到97.1%,比原网络检测性能提升了5.6%,有效改善了复杂背景下小目标的错测、漏检现象。  相似文献   

12.
针对电动车头盔佩戴检测存在遮挡、车辆密集以及一车多人的复杂场景下出现的漏检、误检问题,在 YOLOv5s 的基 础上,提出了一种应用于电动车头盔佩戴检测的改进算法。设计了一种由递归门控卷积改进的 GBC3 模块,替换网络主干和 特征融合层(feature pyramid networks,FPN)中的 C3 模块,加强邻间特征的空间信息交互,提高网络的特征提取和特征融合 能力;其次在主干和特征融合网络添加无参注意力机制(SimAM), 以调整特征图中不同区域的注意力权重,对重要目标施加 更多关注;最后引入调整超参后的 WIOU 损失函数,优化预测框回归,提高模型的目标定位能力。在自制电动车头盔数据集 上的实验结果表明,改进模型在仅增加较少参数的前提下,其平均精度均值(mAP) 达到97.3%,较 YOLOv5s 提高了3 . 2%, 并且检测速度为87.1fps,改善了误检和漏检的问题,同时仍具有较高的实时性,更适用于电动车驾乘者的头盔佩戴检测。  相似文献   

13.
作为光纤陀螺仪的核心部件,光纤环的绕制质量对光纤陀螺的精度至关重要。为了保证光纤环绕制的准确率和效率,提出了一种基于改进YOLO算法的目标检测方法。该方法采用Shufflenetv2网络来替代YOLO主干网络中的卷积层和池化层,提升了网络的特征提取能力;加入Focus模块提升训练速度;采用K-means聚类算法对原始锚框进行聚类,得到适用于光纤绕制缺陷的预测框,提高缺陷检测的准确率;同时修改损失函数,使用CIOU来计算定位损失,使用Focal Loss作为置信度损失和分类损失函数,加快网络收敛;并进行了数据增强,增强了网络的泛化能力。实验结果表明,改进后的YOLO算法的平均准确率达到了99.63%,相比于原始的YOLOv3-tiny算法提升了2.06%,检测速度达到91 fps,这将保证了光纤环的绕制系统的实际应用。  相似文献   

14.
针对YOLO算法在下采样过程中丢失了部分大尺寸特征图的有效信息,从而导致在检测任务中因目标定位不够精准而影响模型整体检测精度的问题。提出利用多尺度特征融合的方法来解决YOLO定位不精准的问题,首先,对YOLO算法的网络模型进行修改,利用YOLO网络模型中不同尺寸特征图具有不同特征属性的特点,融合不同尺寸特征图来提高检测网络对目标的定位精度;其次在预训练模型的基础上对修改后的网络模型进行重新训练;最后在计算机中对训练好的模型进行检测试验。实验结果表明,基于多尺度特征的YOLO目标检测算法在精确率上相对于YOLO目标检测算法提高了3.02%,mAP提高了1.53%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号