首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
目的 点态卷积网络用于点云分类分割任务时,由于点态卷积算子可直接处理点云数据,逐点提取局部特征向量,解决了结构化点云带来的维度剧增和信息丢失等问题。但是为了保持点云数据结构的一致性,点态卷积算子及卷积网络模型本身并不具有描述点云全局特征的结构,因此,对点态卷积网络模型进行扩展,扩展后的模型具有的全局特征是保证分类分割准确性的重要依据。方法 构造中心点放射模型来描述点云逐点相对于全局的几何约束关系,将其引入到点态卷积网络的特征拼接环节扩展特征向量,从而为点态卷积网络构建完善的局部—全局特征描述,用于点云数据的分类分割任务。首先,将点云视为由中心点以一定方向和距离放射到物体表面的点的集合,由中心点指向点云各点的放射矢量,其矢量大小确定了各点所存在的曲面和对于中心点的紧密程度,矢量方向描述了各点对于中心点的包围方向及存在的射线。进而由点云中的坐标信息得到点云的中心点,逐点计算放射矢量构造中心点放射模型,用以描述点云的全局特征。然后,利用点云数据的坐标信息来检索点的属性,确定卷积中参与特定点卷积运算的邻域,点态卷积算子遍历点云各点,输出逐点局部特征,进一步经多层点态卷积操作得到不同深度上的局部特征描述。最后,将中心点放射模型的全局特征和点态卷积的局部特征拼接,完成特征扩展,得到点态卷积网络的扩展模型。拼接后的局部—全局特征输入全连接层用于类标签预测,输入点态卷积层用于逐点标签预测。结果 在ModelNet40和S3DIS(Stanford large-scale 3D indoor spaces dataset)数据集上分别进行实验,验证模型的分类分割性能。在ModelNet40的分类实验中,与点态卷积网络相比,扩展后的网络模型在整体分类精度和类属分类精度上分别提高1.8%和3.5%,在S3DIS数据集的分割实验中,扩展后的点态卷积网络模型整体分割精度和,类属分割精度分别提高0.7%和2.2%。结论 引入的中心点放射模型可以有效获取点云数据的全局特征,扩展后的点态卷积网络模型实现了更优的分类和分割效果。  相似文献   

2.
在卷积神经网络中融入注意力机制越来越成为语义分割强化特征学习的重要方法.提出了一种融合了局部注意力和全局注意力的卷积神经网络.输入图像经主干网络的特征提取,并行输入给局部注意力和全局注意力模块.局部注意力模块以编码-解码结构实现多尺寸的局部特征融合,全局注意力模块根据每个像素与其所在特征图上所有像素的相关性捕获全局信息...  相似文献   

3.
目的 螺栓是确保输电线路安全牢靠的基石,螺栓缺销、松动和锈蚀等缺陷是造成输电线路损坏甚至重大事故的重要原因之一。本文针对螺栓缺陷存在视觉不可分的问题,提出了一种改进NTS-Net(navigator-teacher-scrutinizer network)的螺栓属性多标签分类方法。方法 为了增强模型对不规则轮廓的处理能力,采用可变形卷积的ResNet-50网络作为特征提取网络从原图中提取全局特征。利用NTS-Net学习得到图像信息量最大的判别性局部区域。为了考虑不同局部特征对不同属性标签的不同影响,在局部特征与全局特征融合时引入通道注意力机制,提取特征的通道权重,获取关键通道特征以改善多标签分类效果。结果 实验结果表明,本文在螺栓多属性分类数据集上的平均分类精确率为84.5%,比采用传统的多标签分类精确率提升了10%~20%。结论 本文通过可变形卷积提升网络的特征提取能力以及引入通道注意力机制实现了对NTS-Net提供的局部特征的高效利用,为解决螺栓多属性分类中存在的问题提供了一种新的思路。  相似文献   

4.
目的 深度网络用于3维点云数据的分类分割任务时,精度与模型在全局和局部特征上的描述能力密切相关。现有的特征提取网络,往往将全局特征和不同尺度下的局部特征相结合,忽略了点与点之间的结构信息和位置关系。为此,通过在分类分割模型中引入图卷积神经网络(graph convolution neural network,GCN)和改进池化层函数,增强局部特征表征能力和获取更丰富的全局特征,改善模型对点云数据的分类分割性能。方法 GCN模块通过K近邻算法构造图结构,利用相邻点对的边缘卷积获取局部特征,在深度网络模型中动态扩展GCN使模型获得完备的局部特征。在池化层,通过选择差异性的池化函数,联合提取多个全局特征并进行综合,保证模型在数据抖动时的鲁棒性。结果 在ModelNet40、ShapeNet和S3DIS(stanford large-scale 3D indoor semantics)数据集上进行分类、部分分割以及语义场景分割实验,验证模型的分类分割性能。与PointNet相比,在ModelNet40分类实验中,整体精度和平均分类精度分别提升4%和3.7%;在ShapeNet部分分割数据集和S3DIS室内场景数据集中,平均交并比(mean intersection-over-union, mIoU)分别高1.4%和9.8%。采用不同的池化函数测试结果表明,本文提出的差异性池化函数与PointNet提出的池化函数相比,平均分类精度提升了0.9%,有效改善了模型性能。结论 本文改进的网络模型可以有效获取点云数据中的全局和局部特征,实现更优的分类和分割效果。  相似文献   

5.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

6.
目的 卷积神经网络结合U-Net架构的深度学习方法广泛应用于各种医学图像处理中,取得了良好的效果,特别是在局部特征提取上表现出色,但由于卷积操作本身固有的局部性,导致其在全局信息获取上表现不佳。而基于Transformer的方法具有较好的全局建模能力,但在局部特征提取方面不如卷积神经网络。为充分融合两种方法各自的优点,提出一种基于分组注意力的医学图像分割模型(medical image segmentation module based on group attention,GAU-Net)。方法 利用注意力机制,设计了一个同时集成了Swin Transformer和卷积神经网络的分组注意力模块,并嵌入网络编码器中,使网络能够高效地对图像的全局和局部重要特征进行提取和融合;在注意力计算方式上,通过特征分组的方式,在同一尺度特征内,同时进行不同的注意力计算,进一步提高网络提取语义信息的多样性;将提取的特征通过上采样恢复到原图尺寸,进行像素分类,得到最终的分割结果。结果 在Synapse多器官分割数据集和ACDC (automated cardiac diagnosis challenge)数据集上进行了相关实验验证。在Synapse数据集中,Dice值为82.93%,HD(Hausdorff distance)值为12.32%,相较于排名第2的方法,Dice值提高了0.97%,HD值降低了5.88%;在ACDC数据集中,Dice值为91.34%,相较于排名第2的方法提高了0.48%。结论 本文提出的医学图像分割模型有效地融合了Transformer和卷积神经网络各自的优势,提高了医学图像分割结果的精确度。  相似文献   

7.
目的 随着3维采集技术的飞速发展,点云在计算机视觉、自动驾驶和机器人等领域有着广泛的应用前景。深度学习作为人工智能领域的主流技术,在解决各种3维视觉问题上已表现出巨大潜力。现有基于深度学习的3维点云分类分割方法通常在聚合局部邻域特征的过程中选择邻域特征中的最大值特征,忽略了其他邻域特征中的有用信息。方法 本文提出一种结合动态图卷积和空间注意力的点云分类分割方法(dynamic graph convolution spatial attention neural networks,DGCSA)。通过将动态图卷积模块与空间注意力模块相结合,实现更精确的点云分类分割效果。使用动态图卷积对点云数据进行K近邻构图并提取其边特征。在此基础上,针对局部邻域聚合过程中容易产生信息丢失的问题,设计了一种基于点的空间注意力(spatial attention,SA)模块,通过使用注意力机制自动学习出比最大值特征更具有代表性的局部特征,从而提高模型的分类分割精度。结果 本文分别在ModelNet40、ShapeNetPart和S3DIS(Stanford Large-scale 3D Indoor Spaces Dataset)数据集上进行分类、实例分割和语义场景分割实验,验证模型的分类分割性能。实验结果表明,该方法在分类任务上整体分类精度达到93.4%;实例分割的平均交并比达到85.3%;在室内场景分割的6折交叉检验平均交并比达到59.1%,相比基准网络动态图卷积网络分别提高0.8%、0.2%和3.0%,有效改善了模型性能。结论 使用动态图卷积模块提取点云特征,在聚合局部邻域特征中引入空间注意力机制,相较于使用最大值特征池化,可以更好地聚合邻域特征,有效提高了模型在点云上的分类、实例分割与室内场景语义分割的精度。  相似文献   

8.
目的 食物图片具有结构多变、背景干扰大、类间差异小、类内差异大等特点,比普通细粒度图片的识别难度更大。目前在食物图片识别领域,食物图片的识别与分类仍存在精度低、泛化性差等问题。为了提高食物图片的识别与分类精度,充分利用食物图片的全局与局部细节信息,本文提出了一个多级卷积特征金字塔的细粒度食物图片识别模型。方法 本文模型从整体到局部逐级提取特征,将干扰较大的背景信息丢弃,仅针对食物目标区域提取特征。模型主要由食物特征提取网络、注意力区域定位网络和特征融合网格3部分组成,并采用3级食物特征提取网络的级联结构来实现特征由全局到局部的转移。此外,针对食物图片尺度变化大的特点,本文模型在每级食物特征提取网络中加入了特征金字塔结构,提高了模型对目标大小的鲁棒性。结果 本文模型在目前主流公开的食物图片数据集Food-101、ChineseFoodNet和Food-172上进行实验,分别获得了91.4%、82.8%、90.3%的Top-1正确率,与现有方法相比提高了1%~8%。结论 本文提出了一种多级卷积神经网络食物图片识别模型,可以自动定位食物图片区分度较大的区域,融合食物图片的全局与局部特征,实现了食物图片的细粒度识别,有效提高了食物图片的识别精度。实验结果表明,该模型在目前主流食物图片数据集上取得了最好的结果。  相似文献   

9.
目的 3D点云与以规则的密集网格表示的图像不同,不仅不规则且无序,而且由于输入输出大小和顺序差异,具有密度不均匀以及形状和缩放比例存在差异的特性。为此,提出一种对3D点云进行卷积的方法,将关系形状卷积神经网络(relation-shape convolution neural network,RSCNN)与逆密度函数相结合,并在卷积网络中增添反卷积层,实现了点云更精确的分类分割效果。方法 在关系形状卷积神经网络中,将卷积核视为由权重函数和逆密度函数组成的3D点局部坐标的非线性函数。对给定的点,权重函数通过多层感知器网络学习,逆密度函数通过核密度估计(kernel density estimation,KDE)学习,逆密度函数的引入对点云采样率不均匀的情况进行弥补。在点云分割任务中,引入由插值和关系形状卷积层两部分组成的反卷积层,将特征从子采样点云传播回原始分辨率。结果 在ModelNet40、ShapeNet、ScanNet数据集上进行分类、部分分割和语义场景分割实验,验证模型的分类分割性能。在分类实验中,与PointNet++相比,整体精度提升3.1%,在PointNet++将法线也作为输入的情况下,精度依然提升了1.9%;在部分分割实验中,类平均交并比(mean intersection over union,mIoU)比PointNet++在法线作为输入情况下高6.0%,实例mIoU比PointNet++高1.4%;在语义场景分割实验中,mIoU比PointNet++高13.7%。在ScanNet数据集上进行不同步长有无逆密度函数的对比实验,实验证明逆密度函数将分割精度提升0.8%左右,有效提升了模型性能。结论 融合逆密度函数的关系形状卷积神经网络可以有效获取点云数据中的局部和全局特征,并对点云采样不均匀的情况实现一定程度的补偿,实现更优的分类和分割效果。  相似文献   

10.
目的 点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基础上,提出一种结合密集残差结构和多尺度剪枝的点云压缩网络,实现了对点云几何信息和颜色信息的高效压缩。方法 针对点云的稀疏化特点以及传统体素网格表示点云时分辨率不足的问题,采用稀疏张量作为点云的表示方法,并使用稀疏卷积和子流形卷积取代常规卷积提取点云特征;为了捕获压缩过程中高维信息的依赖性,将密集残差结构和通道注意力机制引入到点云特征提取模块;为了补偿采样过程的特征损失以及减少模型训练的动态内存占用,自编码器采用多尺度渐进式结构,并在其解码器不同尺度的上采样层之后加入剪枝层。为了扩展本文网络的适用范围,设计了基于几何信息的点云颜色压缩方法,以保留点云全局颜色特征。结果 针对几何信息压缩,本文网络在MVUB(Microsoft voxelized upper bodies)、8iVFB(8i voxelized full bodies)和Owlii(Owlii dynamic human mesh sequence dataset)3个数据集上与其他5种方法进行比较。相对MPEG(moving picture experts group)提出的点云压缩标准V-PCC(video-based point cloud compression),BD-Rate(bjontegaard delta rate)分别增加了41%、54%和33%。本文网络的编码运行时间与G-PCC(geometry-based point cloud compression)相当,仅为V-PCC的2.8%。针对颜色信息压缩,本文网络在低比特率下的YUV-PSNR(YUV peak signal to noise ratio)性能优于G-PCC中基于八叉树的颜色压缩方法。结论 本文网络在几何压缩和颜色压缩上优于主流的点云压缩方法,能在速率较小的情况下保留更多原始点云信息。  相似文献   

11.
目的点云分类传统方法中大量依赖人工设计特征,缺乏深层次特征,难以进一步提高精度,基于深度学习的方法大部分利用结构化网络,转化为其他表征造成了3维空间结构信息的丢失,部分利用局部结构学习多层次特征的方法也因为忽略了机载数据的几何信息,难以实现精细分类。针对上述问题,本文提出了一种基于多特征融合几何卷积神经网络(multi-feature fusion and geometric convolutional neural network,MFFGCNN)的机载Li DAR(light detection and ranging)点云地物分类方法。方法提取并融合有效的浅层传统特征,并结合坐标尺度等预处理方法,称为APD模块(airporne laser scanning point cloud design module),在输入特征层面对典型地物有针对性地进行信息补充,来提高网络对大区域、低密度的机载Li DAR点云原始数据的适应能力和基础分类精度,基于多特征融合的几何卷积模块,称为FGC(multi-feature fusion and geometric convolution)算子,...  相似文献   

12.
在三维点云数据特征提取过程中,点云数据本身的稀疏性和不规则性会影响输入数据的全局特征表示,且现有方法未考虑不同特征通道的重要性差异,不利于点云特征的全局优化。提出一种基于多分组表征和注意力机制的MANet网络进行三维点云特征描述。为获得完整的点云特征信息,将点云数据输入多分组表征模块获得初始点云特征。为学习点云不同通道的重要性,引入新的通道注意力机制强调对特征表示重要的通道,抑制不重要的通道,进一步优化特征表示。将优化后的特征输入点云分类网络,实验结果表明,多分组表征可以感知局部信息,注意力机制能够优化全局特征表示,所提方法能够对点云数据进行有效学习,有助于提高点云分类的鲁棒性和准确率。在ModelNet10/40分类数据集上总体准确率(overall accuracy)分别达到95.1%和92.5%,在ScanNet和SHREC15数据集上总体准确率分别为78.6%和97.2%,上述结果均优于PointNet++网络。  相似文献   

13.
刘玉珍  李楠  陶志勇 《图学学报》2022,43(4):616-623
点云数据的特征处理是机器人、自动驾驶等领域中三维物体识别技术的关键组成部分,针对点云局部特征信息重复提取、点云物体整体几何结构缺乏识别等问题,提出一种基于环查询和通道注意力的点云分类与分割网络。首先将单层环查询和特征通道注意力机制进行结合,减少局部信息冗余并加强局部特征;然后计算法线变化识别出物体边缘、拐角区域的高响应点,并将其法线特征加入全局特征表示中,加强物体整体几何结构的识别。在ModelNet40和ShapeNet Part数据集上与多种点云网络进行比较,实验结果表明,该网络不仅有较高的点云分类与分割精度,同时在训练时间和内存占用等方面也优于其他方法,此外对于不同输入点云数量具有较强鲁棒性。因此该网络是一种有效、可行的点云分类与分割网络。  相似文献   

14.
许翔  帅惠  刘青山 《自动化学报》2021,47(12):2791-2800
基于深度学习的三维点云数据分析技术得到了越来越广泛的关注, 然而点云数据的不规则性使得高效提取点云中的局部结构信息仍然是一大研究难点. 本文提出了一种能够作用于局部空间邻域的卦限卷积神经网络(Octant convolutional neural network, Octant-CNN), 它由卦限卷积模块和下采样模块组成. 针对输入点云, 卦限卷积模块在每个点的近邻空间中定位8个卦限内的最近邻点, 接着通过多层卷积操作将8卦限中的几何特征抽象成语义特征, 并将低层几何特征与高层语义特征进行有效融合, 从而实现了利用卷积操作高效提取三维邻域内的局部结构信息; 下采样模块对原始点集进行分组及特征聚合, 从而提高特征的感受野范围, 并且降低网络的计算复杂度. Octant-CNN通过对卦限卷积模块和下采样模块的分层组合, 实现了对三维点云进行由底层到抽象、从局部到全局的特征表示. 实验结果表明, Octant-CNN在对象分类、部件分割、语义分割和目标检测四个场景中均取得了较好的性能.  相似文献   

15.
目的 当前的大场景3维点云语义分割方法一般是将大规模点云切成点云块再进行处理。然而在实际计算过程中,切割边界的几何特征容易被破坏,使得分割结果呈现明显的边界现象。因此,迫切需要以原始点云作为输入的高效深度学习网络模型,用于点云的语义分割。方法 为了解决该问题,提出基于多特征融合与残差优化的点云语义分割方法。网络通过一个多特征提取模块来提取每个点的几何结构特征以及语义特征,通过对特征的加权获取特征集合。在此基础上,引入注意力机制优化特征集合,构建特征聚合模块,聚合点云中最具辨别力的特征。最后在特征聚合模块中添加残差块,优化网络训练。最终网络的输出是每个点在数据集中各个类别的置信度。结果 本文提出的残差网络模型在S3DIS (Stanford Large-scale 3D Indoor Spaces Dataset)与户外场景点云分割数据集Semantic3D等2个数据集上与当前的主流算法进行了分割精度的对比。在S3DIS数据集中,本文算法在全局准确率以及平均准确率上均取得了较高精度,分别为87.2%,81.7%。在Semantic3D数据集上,本文算法在全局准确率和平均交并比上均取得了较高精度,分别为93.5%,74.0%,比GACNet (graph attention convolution network)分别高1.6%,3.2%。结论 实验结果验证了本文提出的残差优化网络在大规模点云语义分割的应用中,可以缓解深层次特征提取过程中梯度消失和网络过拟合现象并保持良好的分割性能。  相似文献   

16.
目的 针对点云分割需要大量监督信息所造成的时间成本高、计算效率低的问题,采用融合原型对齐的小样本元学习算法对点云进行语义分割,使模型能够在监督信息很少的情况下完成分割任务。方法 首先,为了避免小样本训练时易导致的过拟合问题,采用2个边缘卷积层(edge convolution layer,EdgeConv)与6个MLP (multilayer perceptron)交叉构造DGCNN (dynamic graph convolutional neural network),同时还保证了能充分学习到点云信息;然后,以N-way K-shot的形式将数据集输入上述网络学习支持集与查询集的特征,通过average pooling feature获取类别原型并融合原型对齐算法得到更为鲁棒的支持集原型;最后,通过计算查询集点云特征与支持集原型的欧氏距离实现点云分割。结果 在S3DIS (Stanford large-scale 3D indoor spaces dataset)、ScanNet和闽南古建筑数据集上进行点云语义分割实验,与原型网络和匹配网络在S3DIS数据集上进行比较。分割1-way时,平均交并比(mean intersection over union,mIoU)相比原型网络和匹配网络分别提高了0.06和0.33,最高类别的mIoU达到0.95;分割2-way时,mIoU相比原型网络提高了0.04;将DGCNN网络与PointNet++做特征提取器的对比时,分割ceiling和floor的mIoU分别提高了0.05和0.30。方法应用在ScanNet数据集和闽南古建筑数据集上的分割mIoU分别为0.63和0.51。结论 提出的方法可以在少量标记数据的情况下取得良好的点云分割效果。相比于此前需用大量标记数据所训练的模型而言,只需要很少的监督信息,便能够分割出该新类,提高了模型的泛化能力。当面临样本的标记数据难以获得的情况时,提出的方法更能够发挥关键作用。  相似文献   

17.
目的 3维点云是编码几何信息的主要数据结构,与2维视觉数据不同的是,点云中隐藏了3维物体中重要的形状特征。为更好地从无序的点云中挖掘形状特征,本文提出一种能够端到端且鲁棒地处理点云数据的多维度多层级神经网络(multi-dimensional multi-layer neural network,MM-Net)。方法多维度特征修正与融合(multidimensional feature correction and fusion module,MDCF)模块从多个维度自适应地修正局部特征和逐点特征,并将其整合至高维空间以获得丰富的区域形状。另一方面,多层级特征衔接(multi-layer feature articulation module,MLFA)模块利用多个层级间的远程依赖关系,推理得到网络所需的全局形状。此外设计了两种分别应用于点云分类与分割任务的网络结构MM-Net-C(multi-dimensional multi-layer feature classification network)和MM-Net-S(multi-dimensional multi-layer fe...  相似文献   

18.
To make full use of the local spatial relation between point cloud and multi-view data to further improve the accuracy of three-dimensional (3D) shape recognition, a 3D shape recognition network based on multimodal relation is proposed. Firstly, a Multimodal Relation Module (MRM) is designed, which can extract the relation information between the local features of any point cloud and that of any multi-view to obtain the corresponding relation features. Then, a cascade pooling consisting of maximum pooling and generalized mean pooling is applied to process the relation feature tensor and obtain the global relation feature. There are two types of multimodal relation modules, which output the point-view relation feature and the view-point relation feature, respectively. The proposed gating module adopts a self-attentive mechanism to find the relation information within the features so that the aggregated global features can be weighted to suppress redundant information. Extensive experiments show that the multimodal relation module can make the network obtain stronger representational ability; the gating module can make the final global feature more discriminative and boost the performance of the retrieval task. The proposed network achieves classification accuracy of 93.8% and 95.0%, as well as average retrieval precision of 90.5% and 93.4% on two standard 3D shape recognition datasets (ModelNet40 and ModelNet10), respectively, which outperforms the existing works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号