首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对卷积神经网络(CNN)在通用CPU以及GPU平台上推断速度慢、功耗大的问题,采用FPGA平台设计了并行化的卷积神经网络推断系统。通过运算资源重用、并行处理数据和流水线设计,并利用全连接层的稀疏性设计稀疏矩阵乘法器,大大提高运算速度,减少资源的使用。系统测试使用ORL人脸数据库,实验结果表明,在100 MHz工作频率下,模型推断性能分别是CPU的10.24倍,是GPU的3.08倍,是基准版本的1.56倍,而功率还不到2 W。最终在模型压缩了4倍的情况下,系统识别准确率为95%。  相似文献   

2.
针对将各种卷积神经网络(CNN)模型部署在不同硬件端来实现算法加速时所遇到的耗费时间,工作量大等问题,采用Tengine工具链这一新兴的深度学习编译器技术来设计通用深度学习加速器,来将卷积神经网络模型与硬件后端高效快速对接;深度学习加速器的平台采用ZYNQ系列的ZCU104开发板,采用软硬件协同设计的思想,将开源的英伟达深度学习加速器(NVDLA)映射到可编程逻辑门阵列(FPGA)上,与ARM处理器构成SoC系统;NVDLA整体架构规范,包含软硬件设计,采用Tengine工具链代替原来官方的编译工具链;之后在搭建好的NVDLA平台上实现lenet-5和resnet-18的网络加速,完成了mnist和cifar-10的数据集图像分类任务;实验结果表明,采用Tengine工具链要比NVDLA官方的编译工具链推理速度快2.5倍,并且量化工具使用方便,网络模型部署高效。  相似文献   

3.
卷积神经网络在图像处理领域取得了突出的表现,但是由于其庞大的计算量使得它的应用范围受到限制.通常,卷积层的计算量占据了整个网络的大部分计算,主要包含有大量的乘法和加法,本文针对卷积层的计算特点,实现了一种高效的卷积层加速模块的设计.最后通过实验结果表明,在计算相同的网络结构下,该设计相比于CPU的计算效率更高.  相似文献   

4.
针对传统图像分类方法分类精度不高的问题,文章采用了两层卷积和池化的卷积神经网络(Convolutional Neural Network,CNN)算法来对图像进行分类.从不同方面将CNN与支持向量机(Support Vector Machines,SVM)、反向传播算法(Back Propagation,BP)进行图像...  相似文献   

5.
具有优越性能的卷积神经网络算法已得到广泛应用,但其参数量大、计算复杂、层间独立性高等特点也使其难以高效地部署在较低功耗和较少资源的边缘场景.为此结合该种算法的特点提出了一种基于混合架构的卷积神经网络计算加速方法,该方法选用CPU加FPGA的混合架构,对网络模型进行了压缩优化;在FPGA上通过指令控制数据流的DSP阵列结...  相似文献   

6.
人脸年龄估计由于在人机交互和安全控制等领域有潜在应用,因此得到了广泛关注。文中主要进行人脸年龄分组的研究,针对人脸年龄分类问题提出了一种基于集成卷积神经网络的年龄分类算法。首先,训练两个以人脸图像为输入的卷积神经网络,当用卷积神经网络直接提取人脸图像的特征时,主要对 深度的全局特征 进行提取。为了补充人脸图像的局部特征,尤其是纹理信息,将提取的LBP(Local Binary Pattern)特征作为另一个网络的输入。最后,为了结合人脸的全局特征和局部特征,将这3个网络进行集成。该算法在广泛使用的年龄分类数据集Group上取得了不错的效果。  相似文献   

7.
基于卷积神经网络的垃圾图像分类算法   总被引:1,自引:0,他引:1  
垃圾分类作为资源回收利用的重要环节之一,可以有效地提高资源回收利用效率,进一步减轻环境污染带来的危害.随着现代工业逐步智能化,传统的图像分类算法已经不能满足垃圾分拣设备的要求.本文提出一种基于卷积神经网络的垃圾图像分类模型(Garbage Classification Network, GCNet).通过构建注意力机制,模型完成局部和全局的特征提取,能够获取到更加完善、有效的特征信息;同时,通过特征融合机制,将不同层级、尺寸的特征进行融合,更加有效地利用特征,避免梯度消失现象.实验结果证明, GCNet在相关垃圾分类数据集上取得了优异的结果,能够有效地提高垃圾识别精度.  相似文献   

8.
根据卷积神经网络的特点,提出了深度流水的FPGA加速方案,设计了卷积层的通用卷积电路。该卷积电路可以在一个时钟周期内获得一个计算结果。理论上,该方案对于MNIST数据集,在28×28个时钟周期内可以获得一幅图片的运算结果。针对网络训练过程的前向传播阶段,在网络结构和数据集相同的情况下,对GPU,FPGA,CPU进行了在计算效率和能耗之间的比较。其中在计算效率方面,50 MHz频率的FPGA就可以相较于GPU实现近5倍的加速,相较于12核的CPU实现8倍的加速。而在功耗方面,该FPGA的实现方案只有GPU版本的26.7%。  相似文献   

9.
针对现有心音分类算法普适性差、依赖于对基本心音的精确分割、分类模型结构单一等问题,提出采用大量未经过精确分割的心音二维特征图训练深度卷积神经网络(CNN)的方法;首先采用滑动窗口方法和梅尔频率系数对心音信号进行预处理,得到大量未经过精确分割的心音特征图;然后利用深度CNN模型对心音特征图进行训练和测试;根据卷积层间连接方式的不同,设计了 3种深度CNN模型:基于单一连接的卷积神经网络、基于跳跃连接的卷积神经网络、基于密集连接的卷积神经网络;实验结果表明,基于密集连接的卷积神经网络比其他两种网络具备更大的潜力;与其他心音分类算法相比,该算法不依赖于对基本心音的精确分割,且在分类准确率、敏感性和特异性方面均有提升.  相似文献   

10.
基于FPGA的量化推理设计了CNN加速系统;通过对主流的深度神经网络结构的运算特性分析,使用(Density-Based Spatial Clustering of Applications with Noise) DBSCAN聚类算法截取阈值的INT8量化推理方法,融合深度神经网络全连接,减少数据运算位宽和压缩网络大小,在准确率损失很小的情况下有效压缩了网络结构;基于LeNet-5、VGG-16与ResNet-50的CNN网络结构,设计出量化CNN加速系统并进行校验;实验结果表明,网络参数和输入特征数据量化精度为8-bits时,网络压缩率在25%的情况下,网络准确率的损失低于1%;在Xilinx XC7K325平台上量化推理CNN加速系统的运行频率为450 MHz,与其他相似类型的加速器比较,其GOPS性能提升2倍。  相似文献   

11.
微博是互联网舆论演化的重要平台,对微博进行情感分析,有助于及时掌握社会热点和舆论动态。由于微博数据内容简短、特征稀疏、富含新词等特征,微博情感分类依然是一个较难的任务。传统的文本情感分类方法主要基于情感词典或者机器学习等,但这些方法存在数据稀疏的问题,而且忽略了词的语义、语序等信息。为了解决上述问题,提出一种基于卷积神经网络的中文微博情感分类模型CNNSC,实验表明相比目前的主流方法,CNNSC的准确率提高了3.4%。  相似文献   

12.
卷积神经网络(CNN)是目前基于深度学习的计算机视觉领域中重要的研究方向之一。它在图像分类和分割、目标检测等的应用中表现出色,其强大的特征学习与特征表达能力越来越受到研究者的推崇。然而,CNN仍存在特征提取不完整、样本训练过拟合等问题。针对这些问题,介绍了CNN的发展、CNN经典的网络模型及其组件,并提供了解决上述问题的方法。通过对CNN模型在图像分类中研究现状的综述,为CNN的进一步发展及研究方向提供了建议。  相似文献   

13.
14.
研究了一种基于局部卷积神经网络的新型文本分类识别算法.该算法主要由5个步骤组成.第一步使用基于搜索字符串的文本词频统计法构成异构文本数据的同构化结果;第二步将上述同构化结果进行三维模糊化处理;第三步使用经过模糊化的数据输入到卷积神经网络算法模块中进行机器学习分析;第四步通过针对神经元网络输出结果构建三维数据矩阵,并对该...  相似文献   

15.
肺部的检查是每年体检的重要一部分。体检中有成百上千的病例,而每个病例中含有许多的肺部横切面CT图像。这些都需要专业医生去逐个筛查出存在肺结节的病例,不仅工作量大而且存在误筛的可能。针对上述问题,把卷积神经网络(CNN)引入筛查存在肺结节的CT图像诊断,提出一种基于CNN的分类算法。在LIDC数据库的实验结果表明,对比应用广泛的lenet-5网络和传统方法等,使用自定义的卷积神经网络将分类的正确率提升了4到10个百分点不等。AUC值为0.821?6,也是几个分类器中最大的。相比于其他方法,该方法能较为准确地识别肺部CT图像,可以为临床诊断提供较为客观的参考。  相似文献   

16.
考虑到电商平台的日益发展,使用人工分类的方式对服装进行分类无法满足目前的需求.本文从实际的应用场景出发,针对于服装图像进行分类时会受到背景因素干扰、服装图像关键部位信息以及算法模型运行的的硬件要求三个方面,分别进行改进设计.提出:1)消除背景的干扰;2)图像局部信息的利用;3)模型的轻量化处理.最终得到了在满足准确性的前提下,可以在普通低配置PC端进行运行的算法模型,提升了工作效率,同时节省了成本.  相似文献   

17.
雷小康  尹志刚  赵瑞莲 《计算机应用》2005,40(10):2811-2816
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。  相似文献   

18.
卷积神经网络优异的性能使其在图像处理领域占有重要地位,然而模型的实际应用多依赖于GPU,难以部署在对功耗敏感的嵌入式设备上。为了使模型能够高效部署在以FPGA为基础的平台上,本文提出一种卷积神经网络定点化方法,以数据精度与资源消耗为设计指标,根据模型中数据分布的统计以及数据类型的划分,确定不同的定点化策略,并给出了不同量化方法与溢出模式和硬件资源消耗的关系。使用Xilinx定点化库进行测试,实验结果表明,使用16位定点数对模型进行统一量化,能够在较小的精度损失下降低硬件资源消耗,且不同的量化模式下硬件资源消耗相同,不同的溢出模式下硬件资源消耗区别较大。  相似文献   

19.
雷小康  尹志刚  赵瑞莲 《计算机应用》2020,40(10):2811-2816
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。  相似文献   

20.
针对目前利用卷积神经网络进行花朵图像分类时,全连接层产生的参数冗余和破坏空间结构信息问题,提出一种有效的改进方法。首先用1×n和n×1卷积核替换n×n卷积核,然后在卷积层后连接空间金字塔池化进行降维提取特征,最后在Softmax分类器输出概率分布。实验表明本文的方法不仅提高了准确率,而且使训练时间下降了一半,大大提高了训练的速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号