首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
社交网络的发展为情感分析研究提供了大量的多模态数据.结合多模态内容进行情感分类可以利用模态间数据的关联信息,从而避免单一模态对总体情感把握不全面的情况.使用简单的共享表征学习方法无法充分挖掘模态间的互补特征,因此提出多模态双向注意力融合(Multimodal Bidirectional Attention Hybrid...  相似文献   

2.
在多模态语音情感识别中,现有的研究通过提取大量特征来识别情感,但过多的特征会导致关键特征被淹没在相对不重要特征里,造成关键信息遗漏.为此提出了一种模型融合方法,通过两种注意力机制来寻找可能被遗漏的关键特征.本方法在IEMOCAP数据集上的四类情感识别准确率相比现有文献有明显提升;在注意力机制可视化下,两种注意力机制分别找到了互补且对人类情感识别重要的关键信息,从而证明了所提方法相比传统方法的优越性.  相似文献   

3.
现有分析社会媒体中用户情感的方法,大多依赖于某一种模态数据的信息,缺少多种模态数据的信息融合,并且现有方法缺少分析多种模态数据的信息层次结构之间的关联。针对上述问题,该文提出多层次特征融合注意力网络,在分别提取社会媒体中文本和图像多层次特征的基础上,通过计算“图文”特征与“文图”特征,实现多模态的情感特征互补,从而准确感知社会媒体中用户的情感。在Yelp和MultiZOL数据集上的实验结果表明,该文方法可有效提升多模态数据情感分类的准确率。  相似文献   

4.
针对现有的情感分析方法缺乏对短视频中信息的充分考虑,从而导致不恰当的情感分析结果.基于音视频的多模态情感分析(AV-MSA)模型便由此产生,模型通过利用视频帧图像中的视觉特征和音频信息来完成短视频的情感分析.模型分为视觉与音频2分支,音频分支采用卷积神经网络(CNN)架构来提取音频图谱中的情感特征,实现情感分析的目的;...  相似文献   

5.
基于全局语义交互的粗粒度注意力机制不能有效利用各模态间的语义关联提取到模态信息中的关键部分,从而影响分类结果。针对这个问题提出了一个模态信息交互模型MII(modal information interaction),通过细粒度注意力机制提取模态的局部语义关联特征并用于情感分类。首先,模态内信息交互模块用于构建模态内的联系并生成模态内交互特征,随后模态间信息交互模块利用图像(文本)的模态内交互特征生成门控向量来关注文本(图像)中相关联的部分,从而得到模态间的交互特征。考虑到特征中存在的冗余信息,模型加入了自适应特征融合模块,从全局特征层面对特征进行选择,增强了包含情感信息的关键特征的表达能力,弱化了冗余信息对分类结果的影响。在MVSA-Single和MVSA-Multi两个公开数据集上的实验结果表明,该模型优于一系列基线模型。  相似文献   

6.
针对现有多模态情感分析方法中存在情感分类准确率不高,难以有效融合多模态特征等问题,通过研究分析相邻话语之间的依赖关系和文本、语音和视频模态之间的交互作用,建立一种融合上下文和双模态交互注意力的多模态情感分析模型.该模型首先采用双向门控循环单元(BiGRU)捕获各模态中话语之间的相互依赖关系,得到各模态的上下文信息.为了...  相似文献   

7.
针对传统情感分析方法无法解决短视频情感表达问题以及现有多模态情感分析方法准确率不高、不同模态信息之间交互性差等问题,通过对多模态情感分析方法进行研究,结合时域卷积网络(TCN)和软注意力机制建立了复合层次融合的多模态情感分析模型。该模型首先将视频中提取到的文本特征、视频面部特征和音频特征进行维度均衡,然后将得到的不同模态的信息特征进行复合式融合,即先将单模态信息进行融合得到双模态特征信息,再将得到的三个双模态信息进行融合,得到最终的三模态信息,最后将得到的三模态信息和每个单模态信息进行融合得到最终的多模态情感特征信息。每次融合的特征信息都经过TCN网络层进行序列特征的提取,将最终得到的多模态特征信息通过注意力机制进行筛选过滤后用于情感分类,从而得到预测结果。在数据集CMU-MOSI和CMU-MOSEI上的实验表明,该模型能够充分利用不同模态间的交互信息,有效提升多模态情感分析的准确率。  相似文献   

8.
在目前方面级别情感分类的研究方法中,大部分是基于循环神经网络或单层注意力机制等方法,忽略了位置信息对于特定方面词情感极性的影响,并且此类方法编码语句和方面词时直接采用了拼接或者相乘的方式,导致处理长句子时可能会丢失信息以及无法捕获深层次情感特征。为了解决上述问题,该文提出了基于句法结构树和混合注意力网络的模型,其基本思想是将基于句法结构树构建的位置向量作为辅助信息,并提出混合注意力网络模型来提取句子在给定方面词下的情感极性。所以该文设计了浅层和深层网络,并分别构建位置注意力机制和交互型多头注意力机制获取句子中和方面词相关的语义信息。实验结果表明:大多数情况下,该模型在SemEval 2014公开数据集中的Restaurant和Laptop以及ACL14 Twitter上的表现优于相关基线模型,可以有效地识别不同方面的情感极性。  相似文献   

9.
针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和双向门控循环单元来实现单模态内部特征的提取;其次,利用跨模态注意力机制实现模态间的两两特征融合;再次,在不同层次使用自注意力机制实现模态贡献度选择;最后,结合多任务学习获得情感和情绪的分类结果。在公开的CMU-MOSEI数据集上的实验结果表明,情感和情绪分类的准确率和F;值均有所提升。  相似文献   

10.
基于方面的情感分类任务旨在识别句子中给定方面词的情感倾向性.以往的方法大多基于长短时记忆网络和注意力机制,这种做法在很大程度上仅依赖于建模句子中的方面词与其上下文的语义相关性,但忽略了句中的语法信息.针对这种缺陷,提出了一种交互注意力的图卷积网络,同时建模了句中单词的语义相关性和语法相关性.首先使用双向长短时记忆网络来...  相似文献   

11.
方面级别情感分析是一项细粒度的情感分类任务,旨在确定特定方面的情感极性。以往的方法大都是基于方面或上下文向量的平均值来学习上下文或方面词的注意力权重,但当方面词和上下文较长时,这种方法可能会导致信息丢失。该文提出了一种建立在BERT表示上的螺旋注意力网络(BHAN)来解决这一问题,模型中的螺旋注意力机制与之前注意力机制不同的是,基于方面词得到加权后的上下文表示后,用这个新的表示计算方面词的权重,然后用这个新的方面词的表示重新计算上下文的权重,如此循环往复,上下文和方面词的表示会得到螺旋式的提高。该文在2014年SemEval任务4和Twitter数据集上进行了模型评估,实验结果表明,其性能超过了之前最佳模型的结果。  相似文献   

12.
多模态情感分析旨在通过用户上传在社交平台上的视频来判断用户的情感. 目前的多模态情感分析研究主要是设计复杂的多模态融合网络来学习模态之间的一致性信息, 在一定程度上能够提升模型的性能, 但它们大部分都忽略了模态之间的差异性信息所起到的互补作用, 从而导致情感分析出现偏差. 本文提出了一个基于双编码器表示学习的多模态情感分析模型DERL (dual encoder representation learning), 该模型通过双编码器结构学习模态不变表征和模态特定表征. 具体来说, 我们利用基于层级注意力机制的跨模态交互编码器学习所有模态的模态不变表征, 获取一致性信息; 利用基于自注意力机制的模态内编码器学习模态私有的模态特定表征, 获取差异性信息. 此外, 我们设计两个门控网络单元对编码后的特征进行增强和过滤, 以更好地结合模态不变和模态特定表征, 最后在融合时通过缩小不同多模态表示之间的L2距离以捕获它们之间潜在的相似情感用于情感预测. 在两个公开的数据集CMU-MOSI和CMU-MOSEI上的实验结果表明该模型优于一系列基线模型.  相似文献   

13.
目前关于商品评论的深度网络模型难以有效利用评论中的用户信息和产品信息.提出一种基于注意力交互机制的层次网络(HNAIM)模型.该模型利用层次网络对不同粒度语义信息进行提取,并通过注意力交互机制在层次网络中通过捕捉用户、产品中的重要特征来帮助提取文本特征.最终将用户视角下的损失值和产品视角下的损失值作为辅助分类信息,并利...  相似文献   

14.
目前,在属性级情感分类任务上较为成熟的有标注数据集均为英文数据集,而有标注的中文数据集较少.为了能够更好地利用规模庞大但却缺乏成熟标注数据的中文语言数据集,针对跨语言属性级情感分类任务进行了研究.在跨语言属性级情感分类中,一个核心问题为如何构建不同语言的文本之间的联系.针对该问题,在传统的单语言情感分类模型的基础上,使用图神经网络模型对跨语言词-词、词-句之间的关系信息进行建模,从而有效地刻画两种语言数据集之间的联系.通过构建单语词-句之间的联系和双语词-句之间的联系,将不同语言的文本关联起来,并利用图神经网络进行建模,从而实现利用英文数据集预测中文数据集的跨语言神经网络模型.实验结果表明:相较于其他基线模型,所提出的模型在F1值指标上有着较大的提升,从而说明使用图神经网络建立的模型能够有效地应用于跨语言的应用场.  相似文献   

15.
特定目标情感分类旨在准确判别句子中目标的情感极性,现有的方法大多只对单一目标进行分析,而忽略了同一句中多个目标之间存在的依存性。为了有效建模目标之间的依存性,该文提出一种基于多目标依存建模的图卷积网络模型。首先,通过注意力机制对目标进行上下文语义编码;然后,根据句子的依存句法树构建多目标依存图,再根据多目标依存图使用图卷积网络对多个目标之间的依存性进行建模;最后,利用生成的目标表示进行情感分类。该模型在SemEval 2014 Task4 Restaurant和Laptop两个数据集上进行实验,结果表明,该文模型相比基于标准图卷积网络的模型性能有显著提高,在特定目标情感分类任务中更具竞争力。  相似文献   

16.
特定于某一方面的情感分类是情感分析领域中的一项细粒度任务。深层的神经网络可以更好地提取上下文特征与方面特征,同时利用Attention机制可以根据上下文特征和方面特征不同的重要性赋予相应的权重值。模型着重从提取上下文与方面特征和更好地融合上下文与方面向量入手,提出了一种混合提取与多层注意的深度神经网络。基于Bi-LSTM和CNN在提取特征方面都有显著的成效,引入两种网络的合并模型。最后,在经典的Laptop,Resteraunt和Twitter数据集上进行了验证,展示了比基准模型更好地分类效果。  相似文献   

17.
目前,缺少标注样本数据是属性级情感分类任务面临的一大难题,为了解决这一问题,该文提出了结合多项任务的预训练Bert模型。该模型利用大量未标注的篇章级情感分类数据,结合多种分类任务预训练模型共享参数,迁移属性级评论和篇章级评论中共享的有用的语义语法信息,从而帮助模型提高属性级情感分类准确率。在SemEval-14数据集上的实验结果表明,相较于一系列基准模型,该文提出的模型有效提高了属性级情感分类的准确率。  相似文献   

18.
文本情感分类是自然语言处理领域的研究热点,更是产品评价领域的重要任务.考虑到词向量与句向量之间的语义关系和用户信息、产品信息对文本情感分类的影响,提出余弦相似度LSTM网络. 该网络通过在不同语义层级中引入用户信息和产品信息的注意力机制,并根据词向量和句向量之间的相似度初始化词层级注意力矩阵中隐层节点的权重. 在Yelp13、Yelp14和IMDB三个情感分类数据集上的实验结果表明文中方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号