首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
为保证智能车辆能够按照规划的路径安全行驶,且满足车辆动力学特性,针对混合A*算法中没有引导性策略所产生较多不必要的搜索问题,提出概率A*算法先得到搜索粗路径,提高在随后搜索过程中搜索效率。然后利用概率A*算法得到的路径点引导节点走向,避免节点向障碍物等搜寻。最后对节点的代价函数进行优化。仿真实验结果表明,与混合A*算法相比,本文所提出的算法平均减少搜索时间10.8%,且得到的路径相对规整平滑。该算法可以在较短时间内为智能车辆规划一条安全可行平滑的路径。  相似文献   

2.
电力应急机器人能够替代人工进入电力危险场景进行应急抢险作业,机器人路径规划的合理性对其作业的时效性与准确性有很大影响.提出一种层次分析法、改进A*算法和梯度下降法相结合的应急机器人路径规划方法.首先通过层次分析法选定复杂场景中的作业目标,然后结合危险源风险曲线函数和机器人防护阈值对A*算法的代价函数进行改进,实现注重风...  相似文献   

3.
针对传统A*算法在无人机路径规划时效率低下、路径点存在大量冗余,且路径转折较多的缺点,提出一种基于双向机制的改进A*算法。首先引入双向搜索机制,分别以对向搜索的起点作为终点,然后判断终点位于起点的象限进行双定向搜索,从而提高搜索效率。最后引入路径平滑策略,将双定向搜索获取的初始路径进行平滑处理,减少冗余路径点和转折点。通过MATLAB平台对传统A*算法和改进A*算法进行对比实验,实验结果表明,相比于传统A*算法,提出的改进A*算法,路径规划时间平均减少了61.61%,路径点平均减少了83.09%,路径转折点平均减少了46.97%,能够有效提高无人机工作效率,生成平滑路径。  相似文献   

4.
针对三维环境下A*算法搜索路径不平滑,不具有动态避障的问题,本文提出了一种融合A*算法。该算法在A*算法的基础上,首先引入了俯仰角和偏航角作为搜索约束,其次采用变权值的评估函数和无人机航程、飞行高度、威胁代价,最后将平滑后的A*算法与人工势场法相结合,并利用粒子群算法对A*算法和人工势场法涉及的参数进行寻优。仿真结果显示,融合算法较传统A*算法而言,节省5.34%的燃油损耗,提高了搜索效率,缩短了路径长度,规划出的路径更加平滑,而且能够实现实时动态避障。  相似文献   

5.
针对A*算法在移动机器人路径规划存在搜索效率低,路径斜穿障碍物顶点,路径拐弯多等问题。提出一种改进的A*算法,首先在A*算法的邻域扩展中采用避免斜穿障碍物顶点的策略;再引入障碍物因素对评价函数进行指数加权,减少不必要的搜索,提高A*算法的效率和灵活性,使算法偏向于选择障碍物较少的路径;最后使用三次优化折线的策略,加入障碍物安全距离,减少路径上的冗余节点和拐弯。使用MATLAB进行实验仿真,结果表明,在20 m×20 m、40 m×40 m、60 m×60 m栅格地图环境下,改进A*算法较传统A*算法,搜索时间分别减少70.12%、84.31%、91.44%,扩展节点分别减少53.77%、71.20%、74.30%,路径累计拐弯角度分别减少70.48%、76.31%、82.18%,改进A*算法能够有效的提高移动机器人路径规划的效率,路径更为平滑和安全,且在复杂环境中优势更为明显。  相似文献   

6.
针对F-RRT*算法在狭窄环境和多障碍物复杂环境下搜索效率低的问题,提出一种基于双向搜索的F-RRT*算法(BF-RRT*)。以F-RRT*算法为基础,首先采用双向搜索结构,双树从起点和终点轮流扩展,使用贪婪启发式引导随机树生长;其次,针对连续扩展过程中产生的冗余点进行消除处理,快速获得低成本路径,有效提高了规划速度;然后引入启发式函数,并对连接点进行优化以提高路径整体质量。最后分别基于MATLAB和Gazebo仿真平台将改进算法进行了对比实验,结果表明在不同环境下,该算法相较于原算法在迭代次数上平均降低63.5%,在规划时间上平均降低88.41%以上,有效提高了规划效率。  相似文献   

7.
本研究旨在解决自主移动机器人在点到点路径规划中面临的搜索效率低下、易陷入局部最优解以及对未知动静态障碍物处理不够实时的问题。为此,将改进A*算法与改进 DWA进行了有效融合。在改进的A*算法中,我们引入了基于障碍率的权重因子和双向优化策略,以提升搜索效率并生成更加平滑的路径。同时,改进的DWA算法融入了两种新的障碍物评价函数,并通过调整权重系数有效地避免了局部最优解问题。通过将改进的DWA算法与改进的A*算法结合,实现了对未知动静态障碍物的高效实时避障。仿真实验结果显示,提出的改进A算法与传统A算法以及文献[23]的改进算法相比,在四种环境下的表现表明:路径转弯次数分别平均减少了30.14%和18.16%,搜索空间分别减少了35.09%和15.21%,规划时间分别降低了82.36%和38.26%。进一步地,结合改进的DWA算法后,路径规划时间、路径长度和平均运动速度相比融合传统DWA算法和文献[23]的融合算法分别平均减少了37.46%和9.82%,减少了4.59%和3.63%,提高了53.49%和7.09%。  相似文献   

8.
彭哲  杨兴果 《电工技术》2023,(16):20-25
生产实践证明,高效率的企业生产离不开生产物流的支持.仓库内的物料配送是生产物流系统的重要组成 部分,由于仓库内部复杂的障碍环境,往往难以合理规划其配送路线.如果能够合理规划仓库内的配送路线,就可以 提高配送环节的效率,有助于提高生产效率.以改进的A?算法在仓库物料配送路径规划中的应用为研究对象,首先 分析仓库物料配送路径规划的环境,其次采用栅格法模拟仓库下的环境,完成对障碍物环境下的配送仿真实验.分析 A?算法的搜索原理,并通过融合改进的A?算法与动态窗口(Dynamicwindowapproach,DWA)算法,设计融合算 法,改进后的融合算法将具有更优秀的路径规划能力,在仓库复杂环境下物料配送的路径规划更合理.MATLAB 2018b仿真环境下的对比实验表明,融合算法能有效减小搜索范围,提升搜索效率,同时也能合理规避静态障碍物和 动态障碍物,从而获得更优秀的路径规划效果.  相似文献   

9.
空间机器人的任务规划和路径规划   总被引:4,自引:0,他引:4  
樊滨温  潘少静 《电气自动化》1999,21(6):39-41,44
本文给出我们开发的自主式空间机器人系统的结构,具体阐述了该系统的任务规划和路径规划的原理。在任务规划中,系统能够理解任务,并能分解任务在分解任务的过程中,系统对各状态进行碰 稳定性检查,形成较优化的基本动作序列,在路径规划中,通过划分状态空间,构造特征网,在特征网中搜索路径是到机器人运动的无碰路径,本系统通过任务规划和路径规划,实现了把随意摆放的规则物体搭成目标结构的操作。  相似文献   

10.
针对蚁群算法在机器人三维避障路径规划中收敛速度慢以及精度较低的缺陷,结合人工势场法强化目标路径的优点,引入人工势场法中目标点处的引力域,修改了蚁群算法的启发值参数。在原有蚁群算法的基础上,提出了吸引素概念,根据吸引素修改了原有信息素参数的更新规则,使得蚁群算法能更快的达到收敛。最后仿真结果表明,在相同工作环境下改进后蚁群算法达到最优适应度值所需迭代次数相较于改进前存在明显的缩短,同时最优适应度值也有一定的提升。  相似文献   

11.
在移动机器人的路径规划技术中,跳点搜索算法(JPS)因具备简单、快速、易实现的特性而被广泛使用。然而,传统的JPS算法由于启发式函数搜寻效率低导致其搜索的节点数量冗余,而且难以有效兼顾规划路径的安全性。针对该问题,本文提出了一种改进的JPS算法。该方法设计了一种由对角线距离和方向信息结合的启发式函数用于提高寻路效率,并且进一步对规划路径进行平滑处理以有效兼顾规划路径的安全可靠性。移动机器人在复杂障碍物环境下的路径规划仿真实验表明,相较于JPS算法,本文改进后的JPS算法平均规划时间减少了13.4%,平均路径长度减少了3.1%,平均危险点数量降低了83.3%。  相似文献   

12.
在全局静态环境下,提出一种改进蚁群算法,解决传统蚁群算法用于路径规划出现的收敛速性差、局部最优和求解质量差等不足。该算法引入障碍物排斥权重和新的启发因子到路径选择概率中,提高避障能力,增加路径选择的多样性;然后,设置局部信息素的阈值和限定范围更新局部信息素,采用交叉操作获取新路径,引入最优解和最差解,改变全局信息素的更新方式,提高全局搜索能力和解的质量,避免算法陷入局部最优。仿真结果表明,该算法能有效获得最优路径,在长度上比蚁群算法及其他算法分别减少了18%、5.7%和11%,算法迭代次数及运行时间都有所降低,提高了收敛速度和搜索能力。  相似文献   

13.
针对移动机器人在蚁群算法路径规划中存在陷入局部收敛且无法做到路径最优的问题,提出了改进变步长蚁群算法,使其能够在收敛迭代次数较少的情况下做到路径最优。针对蚁群算法应用在路径规划中的相关特性,优化信息素分配,降低局部信息素含量对算法的影响,避免蚁群在搜索路径时陷入局部最优,在转移概率公式中增加权重因子,提高移动机器人朝着终点方向移动的概率,有效减少蚁群收敛迭代次数,改变移动机器人移动步长,使其能在360°内自由无碰撞移动,有效缩短路径长度。仿真结果表明,在简单环境下,改进变步长蚁群算法的收敛迭代次数及最优路径长度分别为2次及28.042 m,传统蚁群算法的收敛迭代次数及最优路径长度分别为25次及29.213 m;在复杂环境下,改进变步长蚁群算法的收敛迭代次数及最优路径长度分别为2次及43.960 2 m,改进势场蚁群算法的收敛迭代次数及最优路径长度分别为16次及45.112 7 m。仿真结果验证了改进变步长蚁群算法的有效性和优越性。  相似文献   

14.
由于惯性权重取值不合适和迭代后期粒子群体多样性下降,导致传统粒子算法在移动机器人路径规划研究过程中存在局部最优解问题。针对此问题提出了一种改进粒子群算法的移动机器人路径规划方法。首先建立机器人路径规划的栅格地图模型,在此基础上对传统的粒子群算法进行了改进。随后,引入了基于相似度概念的非线性动态惯性权值调整方法,从而使得粒子的更新速率能够适配寻优过程的各个阶段,并且通过引入免疫算法中的免疫信息调节机制,增加了粒子的多样性,增强了其摆脱局部最优值的能力。仿真结果表明,所提出的改进粒子群算法具有更高的最佳路径搜索能力,其综合性能显著优于传统的粒子群算法。  相似文献   

15.
针对灰狼优化算法在移动机器人路径规划时易陷入局部最优且效率低的问题,提出一种杂交退火灰狼算法。采用可调节的非线性收敛因子进行平衡算法的前期搜索和后期寻优;同时采用自适应遗传杂交策略,对灰狼群体以一定概率两两杂交以产生新个体,从而有效增强灰狼群体的多样性;在迭代的后期用模拟退火操作接受候选狼,避免算法陷入局部最优解。将路径长度和路径平滑度作为适应度评估指标并建立评估函数以评估路径规划效果。最后,路径规划实验结果表明,在3种不同尺寸的地图上,本文改进算法的适应度比灰狼优化算法分别优化了2.10、3.15、3.94,路径规划效果明显优于其他相关算法。  相似文献   

16.
针对工业机器人在复杂环境中运动的避障及路径优化问题,提出基于改进人工蜂群算法的工业机器人避障路径规划策略。首先针对传统人工蜂群算法搜索能力不足且容易陷入局部最优的问题,将禁忌搜索思想引入到人工蜂群算法最优解搜索过程中,形成了基于禁忌搜索的改进型人工蜂群算法,然后将其应用到工业机器人的路径规划问题中,并进行了仿真实验。结果表明,改进后的方法能够得到最优的路径,且寻优速度快、过程稳定。该方法可用于解决工业机器人路径规划问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号