首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
《铸造技术》2016,(5):886-889
以Gd3Al2作为母相,在其中少量添加Ga元素替代部分Al元素,使其形成Gd3Al2-xGax(x=0.1,x=0.2,x=0.3)系列合金,经过热处理后,通过X射线衍射、扫描电镜、振动样品磁强计测量及直接测量等方法进行研究,实验结果表明:Gd3Al2-xGax(x=0.1,x=0.2,x=0.3)系列合金的晶体结构均为Zr3Al2型,主相为Gd3Al2,还有少量的Gd2Al相和Gd Al相。当x=0.2时,Gd3Al2-xGax合金的绝热温变值为2.7 K,比Gd3Al2高0.7 K,居里温度为277 K。少量添加Ga对磁熵变的提高有一定帮助,但对提高居里温度的作用不明显。  相似文献   

2.
选用Mn基Heusler合金为研究对象。通过电弧熔炼和热处理制备样品,并用甩带法制成薄带形状。采用X射线衍射仪和振动样品磁强计等分析仪器测试了样品的晶体结构、磁及磁热性能,分析了Mn含量对材料晶体结构、磁和磁热性能的影响。研究发现,Mn2-xSn0.5Ga0.5合金在常温下为六方结构,在室温附近仅发生一次二阶磁性转变,无明显磁滞和热滞。居里温度和饱和磁化强度对Mn含量非常敏感,随着Mn含量升高,居里温度和饱和磁化强度均出现下降,由Mn1.2Sn0.5Ga0.5的304 K和64.1 emu/g分别降至Mn2Sn0.5Ga0.5的262 K和46.7 emu/g,这表明合金中的磁矩呈亚铁磁形态分布。由于没有磁滞和热滞,室温附近较大的工作温度区间,因此,该材料在磁制冷领域具有很好的应用前景。  相似文献   

3.
本文通过电弧熔炼、熔体快淬及后续热处理,制备出了具有大磁熵变和磁滞损耗小的LaFe11.85Si1.15合金薄带。研究了不同热处理工艺对合金薄带物相组成、微观结构演变、磁熵变、居里温度及巡游电子变磁转变的影响。研究发现,不同退火时间对合金的1:13相含量和磁热效应影响显著,其中退火10 h所制薄带的1:13相含量最高,磁熵变最大,其在0-5 T磁场变化下,磁熵变和制冷能力分别可达20.54 J/(kg K)和417.21 J/kg,且具有明显的磁场诱导巡游电子变磁转变现象。而退火时间较短则不利于1:13相的形成,退火时间过长会引起1:13相的分解和a-Fe相含量的增加。  相似文献   

4.
曾智  侯雪玲  汪学真  向杰  黄健 《上海金属》2011,33(2):55-57,62
磁制冷技术是一种新型的制冷方式,具有结构紧凑、性能可靠、高效和环境友好等特点,室温磁制冷技术更足具有广阔商业化应用前景.主要论述了我国室温磁制冷样机的研究情况及室温磁制冷研究过程中面临的问题.  相似文献   

5.
对于磁制冷GdDyFe铸锭复合材料和快淬得到的纳米晶薄带的结构和磁热效应进行了研究和分析。结果表明,GdDyFe铸锭样品和纳米晶薄带样品的居里温度比GdDy合金高,分别由原来的260K升高到了275K和263K,并保留了较大的磁熵变。而且几种相变温度各不相同的铁磁物质复合的GdDyFe材料及其薄带样品的纳米晶结构使得样品的高磁熵变温区范围宽化。该材料适用于埃里克森循环,为磁制冷材料的实用化带来了希望。  相似文献   

6.
利用MA+SPS技术制备Mn1.1Fe0.9P0.8Ge0.2Bx(x=0,0.02,0.03,0.04)化合物并对其晶体结构和磁热性能进行研究。XRD分析结果表明:该系列化合物具有六方Fe2P结构。随着B含量的增加晶格常数a和c均发生了明显的变化,导致c/a的值先减小后增大。分别利用DSC和VSM对材料的磁热性能进行了测试,结果表明居里温度TC和熵变均与B的含量存在一个非线性关系,当B的含量为0.02时Mn1.1Fe0.9P0.8Ge0.2B0.02化合物的磁热性能最好,TC从x=0时的253K增加到263K,相应的滞后从23K下降到19K,在0~2T外磁场下的磁熵变从28.7J/kg·K增加到32.6J/kg·K。  相似文献   

7.
B元素的添加对Gd5.1Si2Ge2合金磁热性能的影响   总被引:1,自引:0,他引:1  
研究了B元素的添加对Gd5.1Si2Ge2合金的晶体结构和磁热效应的影响.XRD表明:对于Gd5 lSi2Ge2-xBx系列合金,少量的B(x=0.01)替代Ge的样品具有单斜Gd5Si2Ge2结构.随着B含量的增加.合金中开始出现正交结构的Gd5Si4相,居里温度也从285 K(x=0.01)提高到303 K(x=0.15),增加幅度为18 K;相应地绝热温变从2.4 K下降到2 K(1.2 T),仍然保持着较大的绝热温变.对于Gd5.1Si2-yGe2By系列合金,少量的B替代Si的样品具有Gd5Si2Ge2型的单斜结构.随着B含量的增加,合金中出现了低温反铁磁性Gd5Ge3相,居里温度和绝热温变呈现下降趋势.  相似文献   

8.
对Gd1-xTb合金的磁热性能进行了研究。结果表明:Gd0.73Tb0.27的绝热温变比纯度为99.9%的Gd大,居里温度比Gd低14K,其磁热性能优于Gd。添加元素对Gd0.73Tb0.27磁热性能的影响表明:Dy的添加使Gd0.73Tb0.27的最大绝热温变略有减小,但仍保持比纯度为99.9%的Gd大;少量Nd的加入可显著降低居里温度,使最大绝热温变略有减小,它是十分有效的制冷温区调节剂;少量Fe的加入可提高居里温度,同时又能保持较大的绝热温变;Ge的添加使Gd0.73Tb0.27合金的最大绝热温变有所减小,居里温度基本不变。  相似文献   

9.
La(Fe, Si)13HY系合金是一种极具发展潜力的室温磁制冷材料,但该材料易粉化,如何成型并保持大磁热效应成为了亟需解决的问题。本文采用中频感应炉熔炼La0.8Ce0.2Fe11.51Mn0.19Si1.3母合金并退火,之后制备成粉末。合金粉末在650 ℃, 850 ℃和1050 ℃不同温度下热压成型,将热压块体合金加工成薄片后进行饱和氢化。利用X射线衍射仪、扫描电子显微镜、VersLab对样品的相组成、微观结构、磁热性能进行了研究。在1050 ℃下热压样品的孔隙率最低,最大体积磁熵变最高,达到了144.7 mJ/cm3?K。1050 ℃热压样品氢化后居里温度提高至室温附近,仍保持了一级磁相变的大磁热效应,且没有裂痕产生,保持了完整性。  相似文献   

10.
半哈斯勒型合金是近些年来受到国内外广泛关注的室温磁制冷材料之一。由于其原料较为低廉,因此其工业应用前景非常看好。依据其化学成分可大致分为co基、Ni基和Fe基三大类。合金化是调整这些合金相变温度和磁性能的重要手段。通过元素替换、掺杂以及化学计量比的变化不仅可以使半哈斯勒合金的磁性转变温度降低至室温附近,并且可以使其和结构相变温度之间的偏差尽量减小,从而为产生一级磁相变和巨磁热效应创造条件。预计今后几年合金化仍将是半哈斯勒型磁制冷合金研究的重要和热门方向之一。此外,合金的脆性和相变滞后也是值得关注的重要问题。  相似文献   

11.
对成本较低、抗氧化性好的GdAl磁制冷工质材料制作工艺和性能进行了研究。比较了铸锭法和熔体快淬法对磁制冷工质材料组织结构和性能的影响。用直接测量法测其在外加磁场为1.2T,温度变化范围在-10℃~30℃下的磁热效应。结果表明:熔体快淬法制备的磁工质材料晶粒尺寸小于铸锭法,但其磁热效应和居里温度均低于铸锭样,原因是熔体快淬法制备的磁制冷工质材料中相结构发生变化,磁热效应优良的Gd3Al2相减少,性能较差的GdAl3相增加。同时,与铸锭组织相比,细晶组织内部出现大量的晶界,晶界处原子排列的无序度增加,材料的比热升高,导致磁热效应降低。再者,细晶晶界处的原子密度和配位数远远偏离了完整晶体的晶体结构,从而使配位数Z降低而导致居里温度降低。  相似文献   

12.
在氩气气氛中用熔炼法制备了Gd100-xNbx(x=0,1,2,3,5)系列合金,铸锭经1273K均匀化退火96h后水淬至室温。结果表明:Gd100-xNbx系列合金仍保持纯Gd的六方相结构;Nb掺杂合金的居里温度比纯Gd均低2K,在居里点附近发生的磁性转变为二级相变,5T外场下的最大磁熵变约为纯Gd的85%。通过少量Nb(≤5at%)掺杂后,Gd100-xNbx系列合金的显微硬度明显得到提高,与纯Gd相比,显微硬度最大提高幅度达~53%(x=5)。含少量Nb的Gd100-xNbx合金具有较大的磁熵变和较好的加工性能,是一类有很大应用潜力的室温磁致冷材料。  相似文献   

13.
研究了Mn1.25Fe0.75P1-xSix(x=0.50,0.52,0.54,0.56,0.58,0.60)合金的物相、热滞及磁热效应。通过XRD分析表明,合金主相均为Fe2P六角结构(空间群为P 6 2m)。在不同Si含量时,合金中存在FeSi型或Fe3Si型第二相。通过调节Si和P含量的比率,合金的居里温度随Si含量的增加成线性增加,从240 K到313 K。而合金的热滞在逐渐减小。当Si含量为0.58时,在外磁场变化为0~1.5 T下合金的最大等温磁熵变为8.6 J/kg·K。  相似文献   

14.
La(Fe,Si)_(13)氢化物目前被认为是最具有应用前景的室温磁制冷材料之一,对于主动式磁蓄冷制冷机而言,理想的磁制冷工质为平行排列的片状块体。本工作在压强高达40 MPa的高压氢气气氛下烧结制备了不同颗粒尺寸的厚度为0.8 mm的片状LaFe_(11.44)Si_(1.56)氢化物块体,研究了颗粒尺寸及高压烧结时间对氢化物块体的结构及磁热效应的影响。结果表明,和母合金相比,烧结样品的α-Fe含量有明显增加,而烧结时间和颗粒尺寸对α-Fe析出没有显著影响。烧结样品的居里温度在室温以上,并且随着颗粒尺寸和烧结时间的增加而稍有增加。同时,与母合金相比,烧结块体中的磁滞显著降低,这可以归因于较小的颗粒尺寸和样品中存在大量的微观孔洞,降低了相变过程中的内应力。与颗粒尺寸为110~150μm的样品相比,颗粒尺寸小于40μm的片状块体在磁熵变几乎保持不变的基础上,磁滞显著降低35%。在0~1.5 T的外磁场下其磁熵变和体积磁熵变在345 K达到最大值8.5 J/(kg·K)和53 mJ/(cm~3·K)。  相似文献   

15.
Gd1-xVx系列合金的磁热效应研究   总被引:1,自引:0,他引:1  
采用真空电弧熔炼方法制备Gd1-xVx(x=0.01,0.03,0.05,0.07,0.09)系列合金.研究发现:Gd1-xVx合金完全保持了纯Gd的六方型晶体结构,其在居里温度附近的磁特性符合二级相变规律;合金居里温度比纯Gd低1~2 K,并且随x的增加变化很小;在低磁场下Gd1-xVx合金具有较大的磁熵变、绝热温变以及较宽的ΔSM-T 曲线峰,并且所有样品的相对制冷能力都明显优于纯Gd.  相似文献   

16.
研究了Gd0.6Tb0.4-xCox系列稀土合金在261~290K温区范围的磁熵变,发现这种合金具有较大的磁熵变值,适合作为中低磁场(1~2T)下的室温磁制冷材料。  相似文献   

17.
理论计算表明:少量Ce的加入对Gd最大磁熵变的影响较小。对试样Gd100-xCex(X=1、1.4、2.2、5)的测试结果表明:在一定成份范围内,Ce元素的加入使Gd的居里温度呈线性降低;Ce的加入一定程度上降低材料绝热温变的峰值,但降幅不大,绝热温变的峰值对Ce含量的增加并不敏感。  相似文献   

18.
添加元素Sn对Gd5Si2Ge2合金磁热效应的影响   总被引:1,自引:0,他引:1  
为了解决Gd5Si2Ge2磁制冷合金居里点低,制冷温区狭窄问题,采用合金化的方法,利用添加元素Sn代替Si或Ge,提高了Gd5Si1.9Ge2Sn0.1材料的居里温度,同时保持工质材料Gd5Si2Ge2的巨磁热效应,并相对于Gd5Si2Ge2合金的制冷温区有了很大的拓展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号