首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
周力  刘从德  马建超  徐松 《特殊钢》2016,37(6):27-31
对A类夹杂物超标(A细>3.0级,A粗>2.5级)含硫齿轮钢QT20CrMo(/%:0.20C,0.020S,0.020Al,0.95Cr,0.20Mo)Φ16 mm轧材和150 mm×150 mm铸坯中的MnS央杂进行了分析,得出铸坯中心区域的大尺寸MnS夹杂物是轧材中超标A类夹杂物的来源,并且中心偏析严重是铸坯中心区域形成大尺寸MnS夹杂物的主要原因。通过将二次冷却比水量从0.37 L/kg提高到0.59 L/kg后,铸坯中心碳偏析指数由1.12~1.44降低至0.99~1.23,硫偏析指数由1.28~1.70降低至1.01~1.31,最大网状MnS尺寸由2 000μm降低至1 000μm。QT20CrMo钢轧材A类夹杂物合格率达100%,A细类央杂物≤2.0级的比例由25.0%提高至97.0%。  相似文献   

2.
马娥 《河北冶金》2023,(8):63-66
在非调质钢中加入硫元素用于改善钢材切削性能,但硫与锰结合形成MnS夹杂严重影响钢材的横向冲击性能,因此含硫钢中的MnS夹杂物的控制是该类钢种生产的主要难题之一。对含硫非调质钢中MnS进行研究发现,在铸坯的柱状晶区域,MnS夹杂物分布均匀、量多细小;在等轴晶区域,MnS夹杂物分布不均匀,量少粗大;MnS超标比例为45%。通过在连铸过程中降低拉速和过热度、调整冷却参数,控制铸坯冷却速度,MnS夹杂显著细化,主要以2.5~3.5为主;在热处理过程中,随着加热温度由800℃提高到1 200℃,MnS分裂球化逐渐明显。调整连铸和加热工艺参数后,MnS超标比例降至10%,铸坯不合格率大大降低。  相似文献   

3.
 采用无水有机溶液电解法分离提取重轨钢中的MnS夹杂物,采用扫描电镜观察铸坯内和钢轨中MnS夹杂物的三维形貌,并结合能谱仪分析其成分。铸坯被轧制成钢轨后,相应的MnS夹杂物都沿着轧制方向被轧制成长条状。基于热力学和动力学模型,分析重轨钢中MnS夹杂物析出行为以及在钢液凝固过程中锰元素和硫元素偏析的程度。热力学分析表明,MnS夹杂物在凝固末期凝固分数为0.94时开始析出,其析出量由初始[w([Mn])]和初始[w([S])]决定,且在凝固过程受到冷却速率的影响,对比发现,热力学的计算析出结果与Thermo-Calc和FactSage6.4的计算结果有较好的一致性;动力学分析表明,在钢液凝固过程增加冷却速率,凝固析出的MnS颗粒尺寸将减小。通过调整钢中[w([Mn])]和[w([S])]以及改变冷却速率,可以控制MnS的析出时机和形态,减小其对钢性能的有害影响。  相似文献   

4.
铸坯中MnS夹杂物的形貌及尺寸对钢的性能影响显著,因此了解并调控其析出长大过程具有重要意义。采用连铸坯枝晶生长热模拟试验,观测了U78CrV重轨钢铸坯凝固过程中MnS夹杂的形貌及尺寸变化规律,结合热力学和动力学计算,分析了重轨钢铸坯中MnS夹杂的析出长大行为。热模拟试验表明,重轨钢铸坯中MnS主要在凝固末期析出,多分布于枝晶间隙。其中,柱状晶区中MnS主要呈球形、椭圆形及短棒状,平均等效半径为2.42μm,最大等效半径为4.19μm;等轴晶区中MnS多呈不规则形状,平均等效半径为4.01μm,最大等效半径为7.58μm。热力学计算表明,柱状晶区MnS析出凝固分数为0.97,析出温度为1 663 K,高于固相线9 K;等轴晶区MnS析出凝固分数为0.95,析出温度为1 623 K,高于固相线20 K。动力学分析表明,柱状晶区MnS理论长大半径为2.74μm,等轴晶区MnS理论长大半径为5.98μm,计算结果与试验结果较为吻合。通过比较柱状晶区与等轴晶区MnS的析出时间,讨论了等轴晶区MnS尺寸明显大于柱状晶区的原因。通过降低初始硫含量、减轻铸坯芯部硫元素的偏析以及提高冷却速率,可以有效降...  相似文献   

5.
针对邯钢Q345RT中厚板生产中出现的钢板探伤不合格缺陷,并且在钢板缺陷处取样,断口有时存在层状现象.采用化学分析、气体含量检验、铸坯低倍检验、金相组织分析和扫描电镜、断口形貌分析等方法,分析钢板探伤不合格的原因.结果表明:铸坯中心偏析严重,因偏析产生的少量马氏体、贝氏体组织导致轧后应力集中,在冷却速度较快的条件下钢板产生微裂纹,以条状MnS和CaO-A12O3为基体的硫化物夹杂和硅酸盐类夹杂物较高,铸坯中氢含量偏高引起氢致裂纹,均可导致钢板探伤不合格.通过控制炼钢工艺过程,减少了铸坯中的夹杂物和氢含量,该中厚板探伤合格率由92%提高到98.2%.  相似文献   

6.
吕迺冰  高航  刘珂  刘斌  徐士新  周洁 《钢铁》2022,57(6):50-56
 中碳超高硫易切削钢SAE144是兼具力学性能与切削性能的结构钢,用于制造汽车发动机密封阀件等,产品多采用转炉/电炉→LF精炼→连铸小方坯→线棒材热轧→冷拉及机加工成型流程生产,近年来市场热度稳步提升。若钢中MnS尺寸过大,零件加工使用过程易发生探伤不合、切削性能差、带状组织严重、力学性能各相异性显著,甚至拉拔加工断裂等问题。MnS夹杂物多在铸坯凝固后期形成,随着轧制与钢基体同步变形,控制该类钢种铸坯内MnS原始尺寸成为控制热轧材中MnS夹杂物形态及尺寸的最关键环节。为控制热轧超高硫中碳钢盘条中MnS夹杂物,利用钢坯凝固数值模拟、第二相析出理论、Ostwald熟化理论计算分析了160 mm2钢坯中硫元素偏析及MnS的生成、长大和熟化过程。计算结果表明,当固相分数fs为0.446、硫微观偏析比达到2.19时,铸坯在凝固末期生成MnS。凝固过程中MnS的生长过程决定了钢坯中MnS颗粒的直径。理论计算表明,当连铸二次冷却水量固定为0.6L/kg时,拉速为1.6、2.1和2.6 m/min时,160 mm2方坯中心的MnS分别增长到30.6、32.2和34.6 μm,与实际测试结果一致。控制该类钢种线材中MnS尺寸的关键是提高二冷区的冷却强度,降低连铸拉速。基于该系列计算方法,提出了160 mm2钢坯中与MnS直径控制目标相匹配的连铸工艺参数控制范围。  相似文献   

7.
王婷  范刘群  隋轶 《宽厚板》2021,27(6):7-11
锯片基体用钢DJ100由连铸坯成材,铸坯在堆垛缓冷过程中发生断裂,对此运用扫描电镜观察及金相检验等方法,从铸坯宏、微观断口形貌、显微组织、夹杂物成分、显微硬度等方面进行断裂失效原因分析.结果 表明:铸坯断裂起源于距离表面1/4厚度处柱状晶一次树枝晶间界形成的磷化物Fe3P.由于连铸二冷水冷却强度不足,降低了铸坯冷却速度,高温长时间缓慢冷却导致溶质元素在枝晶间界严重富集,形成不规则分布的MnS夹杂物和沿晶分布的磷化物Fe3P,弱化枝晶间界,成为裂纹快速扩展的通道.堆垛缓冷阶段,相变应力、热应力、铸坯自身重力共同作用,在裂纹处造成应力集中,裂纹进一步沿着被磷化物Fe3P、MnS夹杂物弱化的自由金属表面快速失稳扩展,导致铸坯发生断裂.  相似文献   

8.
常金宝  杨文  张立峰  任英 《钢铁》2019,54(8):154-160
 对管线钢铸坯中的硫化物特征进行了分析,并对其形成机理进行了讨论。发现从中间包钢液到铸坯,管线钢中夹杂物由低熔点的CaO Al2O3向CaS Al2O3类型转变,且夹杂物尺寸越小,在冷却过程中的转变越充分。根据形貌特征,含硫化物夹杂可分为以下几类,即硫化物在氧化物表面部分析出、硫化物半包裹氧化物、硫化物完全包裹氧化物、纯硫化物和在TiN上析出的硫化物。采用FactSage软件对冷却过程管线钢中的夹杂物转变进行了计算,发现随着温度的降低,液态钙铝酸盐夹杂物逐渐经历CaO·Al2O3→CaO·2Al2O3→CaO·6Al2O3→Al2O3的转变过程,同时CaS和MnS相也在冷却过程中析出,且MnS的析出温度低于CaS,这解释了铸坯中硫化物的特征和形成。  相似文献   

9.
对不同厚度规格中厚钢板用超声波探伤观察到的缺陷统计和分析表明:中厚钢板内部缺陷为钢板厚度中心区域珠光体带中的微裂纹.位于偏析区内宽度超过25 μm珠光体带中;裂纹源为珠光体带中MnS类型的塑性夹杂与钢基体的界面;裂纹的形成温度低于700 ℃,形成于轧后冷却或矫直阶段.铸坯中心线偏析是产生裂纹的内部条件,轧后冷却或矫直过程中的张应力是外部条件.  相似文献   

10.
针对用户在拉拔过程中出现了多次断裂现象,对断口形貌、组织和成分分析,得知铸坯碳偏析是造成82B盘条拉拔脆断的主要原因,且拉拔脆断与B类脆性夹杂物也有一定关系。同时提出采用无铝脱氧工艺、降低铸坯碳偏析工艺及合理控制轧后冷却速度等改进措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号