首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Artificial roughness in form of ribs is convenient method for enhancement of heat transfer coefficient in solar air heater. This paper presents experimental investigation of heat transfer and friction factor characteristics of rectangular duct roughened with W-shaped ribs on its underside on one broad wall arranged at an inclination with respect to flow direction. Range of parameters for this study has been decided on basis of practical considerations of system and operating conditions. Duct has width to height ratio (W/H) of 8.0, relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) 0.018-0.03375 and angle of attack of flow (α) 30-75°. Air flow rate corresponds to Reynolds number between 2300-14,000. Heat transfer and friction factor results have been compared with those for smooth duct under similar flow and thermal boundary condition to determine thermo-hydraulic performance. Correlations have been developed for heat transfer coefficient and friction factor for roughened duct.  相似文献   

2.
The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the underside of the absorber plate of a solar air heater duct. Under the present work, an experimental study has been carried out to investigate the effect of roughness and operating parameters on heat transfer and friction factor in a roughened duct provided with dimple-shape roughness geometry. The investigation has covered the range of Reynolds number (Re) from 2000 to 12,000, relative roughness height (e/D) from 0.018 to 0.037 and relative pitch (p/e) from 8 to 12. Based on the experimental data, values of Nusselt number (Nu) and friction factor (fr) have been determined for different values of roughness and operating parameters. In order to determine the enhancement in heat transfer and increment in friction factor values of Nusselt number and friction factor have been compared with those of smooth duct under similar flow conditions. Correlations for Nusselt number and friction factor have been developed for solar air heater duct provided such artificial roughness geometry.  相似文献   

3.
Experimental investigation on the heat transfer and friction characteristics of rib-grooved artificial roughness on one broad heated wall of a large aspect ratio duct shows that Nusselt number can be further enhanced beyond that of ribbed duct while keeping the friction factor enhancement low. The experimental investigation encompassed the Reynolds number range from 3000 to 21,000; relative roughness height 0.0181–0.0363; relative roughness pitch 4.5–10.0, and groove position to pitch ratio 0.3–0.7. The effect of important parameters on the heat transfer coefficient and friction factor has been discussed and the results are compared with the results of ribbed and smooth duct under similar flow conditions. The present investigation clearly demonstrates that the heat transfer coefficient for rib-grooved arrangement is higher than that for the transverse ribs, whereas the friction factor is slightly higher for rib-grooved arrangement as compared to that of rectangular transverse ribs of similar rib height and rib spacing. The conditions for best performance have been determined. Correlations for Nusselt number and friction factor have been developed that predict the values within reasonable limits.  相似文献   

4.
V.S. Hans  R.P. Saini 《Solar Energy》2010,84(6):898-911
The use of artificial roughness on the underside of the absorber plate is an effective and economic way to improve the thermal performance of a solar air heater. Several experimental investigations, involving different types of roughness elements, have been carried out to improve the heat transfer from the absorber plate to air flowing in solar air heaters. This paper presents an experimental investigation carried out to study the effect of multiple v-rib roughness on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The experiment encompassed Reynolds number (Re) from 2000 to 20000, relative roughness height (e/D) values of 0.019-0.043, relative roughness pitch (P/e) range of 6-12, angle of attack (α) range of 30-75° and relative roughness width (W/w) range of 1-10. Extensive experimentation has been conducted to collect data on heat transfer and fluid flow characteristics of a rectangular duct roughened with multiple v-ribs. Using these experimental data, correlations for Nusselt number and friction factor in terms of roughness geometry and flow parameters have been developed.  相似文献   

5.
As is well known, the heat transfer coefficient of a solar air heater duct can be increased by providing artificial roughness on the heated wall (i.e. the absorber plate). Experiments were performed to collect heat transfer and friction data for forced convection flow of air in solar air heater rectangular duct with one broad wall roughened by wedge shaped transverse integral ribs. The experiment encompassed the Reynolds number range from 3000 to 18000; relative roughness height 0.015 to 0.033; the relative roughness pitch 60.17φ−1.0264<p/e<12.12; and rib wedge angle (φ) of 8, 10, 12 and 15°. The effect of parameters on the heat transfer coefficient and friction factor are compared with the result of smooth duct under similar flow conditions. Statistical correlations for the Nusselt number and friction factor have been developed in terms of geometrical parameters of the roughness elements and the flow Reynolds number.  相似文献   

6.
In this work, results of an experimental investigation of the effect of geometrical parameters of Multi v-shaped ribs with gap on heat transfer and fluid flow characteristics of rectangular duct with heated plate having rib roughness on its underside have been reported. The range of parameters for this study has been decided on the basis of practical considerations of the system and operating conditions of solar air heaters. The experimental investigation encompassed the Reynolds number (Re) range from 2000 to 20,000, relative width ratio (W/w) of 6, relative gap distance (Gd/Lv) of 0.24–0.80, relative gap width (g/e) of 0.5–1.5, relative roughness height (e/D) of 0.043,relative roughness pitch (P/e) of 10, angle of attack (α) of 60°. The maximum enhancement in Nusselt number and friction factor is observed to be 6.32–6.12 times of that of the smooth duct, respectively. The thermo-hydraulic performance parameter is found to be the best for the relative gap distance of 0.69 and the relative gap width of 1.0.  相似文献   

7.
Experimental studies have been conducted to examine the forced convection and flow friction characteristics of air-cooled horizontal equilateral triangular ducts whose internal surfaces have been fabricated with uniformly spaced square ribs. Effects of duct geometry (i.e. relative rib height (H/D) and relative rib-to-rib spacing (S/W)) as well as the hydraulic-diameter based Reynolds number (ReD) on heat transfer coefficient and friction factor of a fully developed turbulent air flow in a horizontal triangular duct with ribbed internal surfaces have been fully investigated. The ranges of experimental parameters under consideration are: H/D from 0.11 to 0.21, S/W from 3.41 to 13.93, and ReD from 4000 to 23,000. Optimum relative rib height and relative rib-to-rib spacing corresponding to maximum thermal performance of this system have been determined, which are equal to 0.18 and 7.22, respectively. Flow friction in the triangular duct increases rather linearly with the relative rib height, but a maximum flow friction factor is obtained at the relative rib-to-rib spacing of 7.22. Non-dimensional expressions for prediction of average Nusselt number and friction factor in terms of ReD, H/D and S/W have been developed correspondingly, which correlate well with the experimental data with maximum deviations of ±3.5% and ±8.7%, respectively.  相似文献   

8.
S.K. Saini  R.P. Saini 《Solar Energy》2008,82(12):1118-1130
An experimental study has been carried out for enhancement of heat transfer coefficient of a solar air heater having roughened air duct provided with artificial roughness in the form of arc-shape parallel wire as roughness element. Increment in friction factor by provided with such artificial roughness elements has also been studied. The effect of system parameters such as relative roughness height (e/d) and arc angle (α/90) have been studied on Nusselt number (Nu) and friction factor (f) with Reynolds number (Re) varied from 2000 to 17000. Considerable enhancement in heat transfer coefficient has been achieved with such roughness element. Using experimental data correlations for Nusselt number and friction factor have also been developed for such solar air heaters, which gives a good agreement between predicted values and experimental values of Nusselt number and friction factor.  相似文献   

9.
An experimental study has been carried out to determine the effect on the heat transfer and friction characteristics of an equilateral triangular solar air heater duct using inclined continuous ribs as roughness element on the absorber plate. The experimental study encompasses the range of Reynolds numbers from 5600 to 28,000, relative roughness height (e/Dh) 0.021–0.043, relative roughness pitch (p/e) 8–16 and angle of attack (α ) 30–60°. The duct has an aspect ratio (W/H) of 1.15. The effect of flow parameters and roughness parameters on heat transfer and friction factor is discussed. The thermohydraulic performance parameter has been determined for the given range of flow parameters and roughness parameters.  相似文献   

10.
Varun  R.P. Saini  S.K. Singal   《Renewable Energy》2008,33(6):1398-1405
An experimental investigation has been carried out to study the heat transfer and friction characteristics by using a combination of inclined as well as transverse ribs on the absorber plate of a solar air heater. The experimental investigation encompassed the Reynolds number (Re) ranges from 2000 to 14 000, relative roughness pitch (p/e) 3–8 and relative roughness height (e/Dh) 0.030. The effect of these parameters on the heat transfer coefficient and friction factor has been discussed in the present paper and correlations for Nusselt number and friction factor has been developed within the reasonable limits. A procedure to compute the thermal efficiency based on heat transfer processes in the system is also given and the effect of these parameters on thermal efficiency has been discussed.  相似文献   

11.
Experiments were conducted to investigate the forced convective heat transfer and flow friction of turbulent airflow in a rectangular duct with cross-ribs attached at the two principal walls in the Reynolds number range from 5000 to 40000. The effect of the rib cross angle (45° 60° 75° and the height (4 mm, 5 mm) of the cross-ribs on the forced convection and flow friction were tested. Non-dimensional correlations for the duct average Nusselt number and friction factor of cross-ribs duct were developed from the test data. Experiments were also conducted for the corresponding parallel ribs to compare their relative performance. The experimental results show that both of the convective heat transfer coefficient and friction factor were increased with cross-ribs, with 45°cross-ribs being the best. Compared with parallel ribs normal to the flow direction under identical flow rate and identical pumping power constraints, the cross-ribs can enhance heat transfer in the lower Reynolds number region, while i  相似文献   

12.
Artificial roughness in the form of repeated ribs has been proposed as a convenient method for enhancement of thermal performance of solar air heaters. This paper presents the experimental investigation of heat transfer and friction factor characteristics of a rectangular duct roughened with repeated square cross-section split-rib with a gap, on one broad wall arranged at an inclination with respect to the flow direction. The duct has a width to height ratio (W/H) of 5.84, relative roughness pitch (P/e) of 10, relative roughness height (e/Dh) of 0.0377, and angle of attack (α) of 60°. The gap width (g/e) and gap position (d/W) were varied in the range of 0.5–2 and 0.1667–0.667, respectively. The heat transfer and friction characteristics of this roughened duct have been compared with those of the smooth duct under similar flow condition. The effect of gap position and gap width has been investigated for the range of flow Reynolds numbers from 3000 to 18,000. The maximum enhancement in Nusselt number and friction factor is observed to be 2.59 and 2.87 times of that of the smooth duct, respectively. The thermo-hydraulic performance parameter is found to be the maximum for the relative gap width of 1.0 and the relative gap position of 0.25.  相似文献   

13.
An experimental investigation has been carried out to study the effect of heat transfer and friction characteristics of air passing through a rectangular duct which is roughened by V-down perforated baffles. The experiment encompassed Reynolds number (Re) from 3800 to 19,000, relative roughness height (e/H) values of 0.285–0.6, relative roughness pitch (P/e) range of 1–4 and open area ratio values from 12% to 44%. The effect of roughness parameters on Nusselt number (Nu) and friction factor (f) has been determined and increase in heat transfer and friction loss has been observed for ducts having a roughened test plate. Maximum Nusselt number is observed for the relative roughness pitch ranging from 1.5 to 3 for flow and geometrical parameters under consideration. The experimental data have been used to develop Nusselt number and friction factor correlations as a function of roughness and flow parameters.  相似文献   

14.
Artificial roughness in the form of repeated transverse chamfered rib-groove roughness on one broad wall has been proposed as a convenient method for enhancement of thermal performance of solar air heater. An experimental investigation on heat and fluid flow characteristics of fully developed turbulent flow in a rectangular duct having repeated integral transverse chamfered rib-groove roughness on one broad wall has been carried out. The roughened wall is uniformly heated while the remaining three walls are insulated. These boundary conditions correspond closely to those found in solar air heaters. Six roughened plates have been tested placing a 60° V-groove at the centre line in between two consecutive chamfered ribs. The ribs' top have been chamfered having chamfer angles of 5°, 12°, 15°, 18°, 22° and 30°, while relative roughness pitch (P/e) and relative roughness height (e/Dh) of the ribs were kept constant having values of 10 and 0.03 respectively. The flow Reynolds number of the duct varied in the range of approximately 3000–21,000, most suitable for solar air heater. The effects of chamfer angle on Nusselt number and friction factor have been discussed and the results are compared with the square rib-grooved and smooth duct under similar flow conditions to investigate the enhancement in Nusselt number and friction factor. The conditions for the maximum enhancement of Nusselt number and friction factor have been determined. It has been found that the thermo-hydraulic performance of the solar air heater provided with such roughness is considerably enhanced.  相似文献   

15.
An experimental investigation has been carried out for a range of system and operating parameters in order to analyse the effect of artificial roughness on heat transfer and friction characteristics in solar air heater duct which is having dimple shaped elements arranged in angular fashion (arc) as roughness elements on absorber plate. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 10–20, relative roughness height (e/Dh) range of 0.021–0.036, arc angle (α) range of 45–75° and Reynolds number (Re) ranges from 3600 to 18,000. A considerable increase in heat transfer and friction loss has been observed. The experimental data have been used to develop Nusselt number and friction factor correlations as a function of roughness parameters and operating parameters.  相似文献   

16.
An experimental investigation has been carried out to study the heat transfer and friction factor characteristics of a V-down-perforated baffled roughened solar air heater duct. The roughened wall was uniformly heated and the rest three walls of the duct were kept insulated. Measurements have been carried out for the duct aspect ratio of 10, Reynolds number range of 3800–19,000, relative hole position range of 0.429–0.571, relative roughness pitch range of 2–4, and open area ratio range of 12–44%. The relative roughness height of 0.4 and angle of attack of 60° are kept constant during the entire experimentation. The heat transfer and friction factor data obtained were compared with the data obtained from a smooth duct under similar operating conditions. In comparison to the smooth duct the V-shaped perforated baffle roughened duct enhanced the Nusselt number and friction factor by 2.57 and 5.96 times, respectively. The thermohydraulic performance parameter is found superior for the open area ratio of 24% and relative roughness pitch of 2.5.  相似文献   

17.
Heat transfer coefficient, flow field, and wall static pressure distributions were measured in a rotating two-pass square duct with detachment of 90° ribs from the first pass leading wall and second pass trailing wall as well as attachment of 90° ribs onto the other two opposite walls. Laser-Doppler velocimetry was used to measure the local flow velocity. The ribs were square in cross-section and their detached-distance/height ratio was 0.38. The rib-height/duct-height ratio and the pitch/rib-height ratio were 0.136 and 10, respectively. Duct Reynolds number was fixed at 1 × 104 and rotating number ranged from 0 to 0.2. Results are documented in terms of the main flow development, cross-stream secondary flow structure, the distributions of the pressure coefficient, the variation of friction factor with Ro, and passage averaged Nusselt number ratios under constant flow rate and constant pumping power conditions. For CFD reference, the periodic fully developed rotating flow condition is attained after the 6th rib pair in the first pass. In addition, the relationships between the regional averaged Nusselt number, transverse and streamwise mean velocity components, and turbulent kinetic energy are addressed. Using these relationships the general superiority of heat transfer enhancement of the attached–detached 90° ribs arrangement over the attached–attached one can be reasonably illustrated. Simple expressions are obtained to correlate the friction factor with Ro, which are lacking in the published literature. The respective contributions of the ribs and passage rotation on the passage friction loss are identified.  相似文献   

18.
This paper presents the results of an experimental investigation of heat transfer to the airflow in the rectangular duct of an aspect ratio 10:1. The top wall surface is made rough with metal ribs of circular cross section in staggered manner to form defined grid. The roughened wall is uniformly heated and the other walls are insulated. This geometry of duct closely corresponds to that used in solar air heaters. The effect of grit geometry [i.e., relative roughness height of grid (e/Dh), relative roughness pitch of grit (p/e), relative length of grit (l/s)] on the heat transfer coefficient and friction factor is investigated. The range of variation of system parameters and operating parameters is investigated within the limits, as e/Dh: 0.035 to 0.044, p/e: 12.5–36 and l/s: 1.72–1, against variation of Reynolds number: 4000–17,000. It is observed that the plate of roughness parameters l/s = 1.72, e/Dh = 0.044, p/e = 17.5 shows optimum performance. Correlations for Nusselt number and friction factor in terms of above parameters are developed which reasonably correlate the experimental data.  相似文献   

19.
An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with transverse ribs on one, two, three, and four walls is reported. Tests were performed for Reynolds numbers ranging from 10,000 to 80,000. The pitch-to-rib height ratio, P/e, was kept at 8 and rib-height-to-channel hydraulic diameter ratio, e/Dh was kept at 0.0625. The channel length-to-hydraulic diameter ratio, L/Dh, was 20. The heat transfer coefficient and friction factor results were enhanced with the increase in the number of ribbed walls. The friction roughness function, R(e+), was almost constant over the entire range of tests performed and was within comparable limits of the previously published data. The heat transfer roughness function, G(e+), increased with roughness Reynolds number and compared well with previous work in this area. Both correlations could be used to predict the friction factor and heat transfer coefficient in a rectangular channel with varying number of ribbed walls. The results of this investigation could be used in various applications of turbulent internal channel flows involving different number of rib roughened walls.  相似文献   

20.
A numerical work has been conducted to examine turbulent periodic flow and heat transfer characteristics in a three dimensional square-duct with inline 60° V-shaped discrete thin ribs placed on two opposite heated walls. The isothermal-flux condition is applied only to the upper and lower duct walls while the two sidewalls are insulated, similar to internal passage cooling of gas turbine blades. The computations are based on the finite volume method with the SIMPLE algorithm for handling the pressure–velocity coupling. Air is the working fluid with the flow rate in terms of Reynolds numbers ranging from 10,000 to 25,000. The numerical result is validated with available square-rib measured data and found to agree well with measurement. The computation reveals that the ribbed duct flow is fully developed periodic flow and heat transfer profiles at about x/D = 7–11 downstream of the inlet. Effects of different rib height to duct diameter ratios, BR, on thermal characteristics for a periodic ribbed duct flow are investigated. It is found that a pair of counter-rotating vortices (P-vortex) caused by the rib can induce impingement/attachment flows on the walls leading to greater increase in heat transfer over the test duct. In addition, the rise of BR values leads to the increase in heat transfer and friction loss. The maximum thermal performance is around 1.8 for the rib with BR = 0.0725 where the heat transfer rate is about 4.0 times above the smooth duct at lower Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号