首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments on porous material heated by a microsecond laser pulse and the corresponding theoretical analysis are carried out. Some non-Fourier heat conduction phenomena are observed in the experimental sample. The experimental results indicate that only if the thermal disturbance is strong enough (i.e., the pulse duration is short enough and the pulse heat flux is great enough) is it possible to observe apparent non-Fourier heat conduction phenomenon in the sample, and evident non-Fourier heat conduction phenomenon can only exist in a very limited region around the thermal disturbance position. The hyperbolic heat conduction (HHC) equation and the dual-phase lag (DPL) model are employed, respectively, to describe the non-Fourier heat condution process happening in the experimental sample, and the finite-difference method (FDM) is used to solve them numerically. The numerical solutions show that both the HHC equation and the DPL model can predict the non-Fourier heat conduction phenomenon emerging in the experimental sample qualitatively. Moreover, if τq and τT are assumed to have suitable values, the theoretical result of the DPL model is more agreeable to the experimental result.  相似文献   

2.
This study employs the space–time conservation element and solution element (CESE) method to simulate the temperature and heat flux distributions in a finite medium subject to various non-Fourier heat conduction models. The simulations consider three specific cases, namely a single phase lag (SPL) thermal wave model with a pulsed temperature condition, a SPL model with a surface heat flux input, and a dual phase lag (DPL) thermal wave model with an initial deposition of thermal energy. In every case, the thermal waves are simulated with respect to time as the thermal wave propagates through the medium with a constant velocity. In general, the simulation results are found to be in good agreement with the exact analytical solutions. Furthermore, it is shown that the CESE method yields low numerical dissipation and dispersion errors and accurately models the propagation of the wave form even in its discontinuous portions. Significantly, compared to traditional numerical schemes, the CESE method provides the ability to model the behavior of the SPL thermal wave following its reflection from the boundary surface. Further, a numerical analysis is performed to establish the CESE time step and mesh size parameters required to ensure stable solutions of the SPL and DPL thermal wave models, respectively.  相似文献   

3.
The effect of non-Fourier boundary condition on the 3-omega method for measuring the thermal conductivity of microscale thin films using the hyperbolic heat conduction equation and the Fourier equation is examined. Non-Fourier boundary condition with the Fourier equation leads to 80% error in the temperature oscillations and increases the error to 85% in the case of non-Fourier boundary condition with the hyperbolic heat conduction equation. The solution of the non-Fourier boundary condition with the hyperbolic heat conduction equation gives the most accurate thermal conductivity expression. The analysis also provides a method for determining the relaxation time of thin films.  相似文献   

4.
IntroductionAs widely known, the hahonal Fourier law isbased on a large quantity of regular heat transfer (i.e. thethermal bine scale is comparatively lOng and the heatflux density is comparatively small) experiments and it'sjust a phenomenological descriphon of regular thermalProcesses. The Fourier law itself mpes an infinitespeed of Propagation of thermal distUrbance, indicatingthat a local change in tempera~ causes aninstantaneous per'tUrbation in the temperatore at eachPOint in the medi…  相似文献   

5.
The non-Fourier transient heat conduction in a finite medium under arbitrary periodic surface thermal disturbance is investigated analytically. In order to obtain the desired temperature field from the known solution for non-Fourier heat conduction under a harmonic disturbance, the principle of superposition along with the Fourier series representation of an arbitrary periodic function is employed. The developed method can be applied for more realistic periodic boundary conditions occurred in nature and technology.  相似文献   

6.
Presented is the analysis of non-Fourier effect in a hollow sphere exposed to a periodic boundary heat flux. The problem is studied by deriving an analytical solution of the hyperbolic heat conduction equation. Using the obtained analytical expression, the temperature profiles at outer and inner surfaces of the sphere are evaluated for various thermal relaxation times. By comparing the results of non-Fourier model with those obtained from Fourier heat conduction equation, the transition process from parabolic model to hyperbolic one is shown. The phase difference and amplitude ratio of boundary surfaces are calculated as functions of the thermal relaxation time and the results are depicted graphically.  相似文献   

7.
This paper presents an analytical analysis of both Fourier and non-Fourier heat conduction in the absorber plates of a flat-plate solar collector. Separation of variables was employed to develop the model. For the analysis, a repetitive heat transfer module was used for the solution of parabolic and hyperbolic equations. From the practical point of view, two types of boundary conditions were separately chosen. A numerical technique based on the finite difference method was employed to determine the temperature for validation purposes. A comparative investigation was carried out to understand the requirements for use of the non-Fourier heat conduction model easily. A significant difference in the temperatures obtained from the Fourier and non-Fourier models was observed for lower values of the Fourier number and higher values of the Vernotte number. Finally, the effect of the boundary conditions on the Fourier and non-Fourier heat transfer was demonstrated.  相似文献   

8.
The understanding of heat transfer in skin tissue is of utmost significance in various areas. Especially in medicine is required a precise determination of the temperature distribution for not thermally damaging healthy tissue when any region of the body is subjected to a heat treatment. The accuracy in predicting temperatures is linked to the use of adequate thermal and numerical methods. In this way, this study presents the results of a two-dimensional model to calculate transient temperature and burn injury distributions in skin tissue. Heat transfer was modeled using the Pennes' thermal model, and the mechanism of heat conduction assessed through two different approaches, classical Fourier law and non-Fourier law, characterized mathematically as parabolic and hyperbolic, respectively. The numerical solutions of the two approaches were compared to analytical solutions reported in the literature, as well as are shown various numerical results under various conditions to evaluate the differences between the two approaches to predict the temperature distribution and thermal damage.  相似文献   

9.
In recent years,many studies have been done on heat transfer in the fin under unsteady boundary conditions using Fourier and non-Fourier models.In this paper,unsteady non-Fourier heat transfer in a straight fin having an internal heat source under periodic temperature at the base was investigated by solving numerically Dual-Phase-Lag and Fractional Single-Phase-Lag models.In this way,the governing equations of these models were presented for heat conduction analysis in the fin,and their results of the temperature distribution were validated using the theoretical results of Single and Dual-Phase-Lag models.After that,for the first time the order of fractional derivation and heat flux relaxation time of the fractional model were obtained for the straight fin problem under periodic temperature at the base using Levenberg-Marquardt parameter estimation method.To solve the inverse fractional heat conduction problem,the numerical results of Dual-Phase-Lag model were used as the inputs.The results obtained from Fractional Single-Phase-Lag model could predict the fin temperature distribution at unsteady boundary condition at the base as well as the Dual-Phase-Lag model could.  相似文献   

10.
The phenomenon of hyperbolic heat conduction in contrast to the classical (parabolic) form of Fourier heat conduction involves thermal energy transport that propagates only at finite speeds as opposed to an infinite speed of thermal energy transport. To accommodate the finite speed of thermal wave propagation, a more precise form of heat flux law is involved, thereby modifying the heat flux originally postulated in the classical theory of heat conduction. As a consequence, for hyperbolic heat conduction problems, the thermal energy propagates with very sharp discontinuities at the wave front. The primary purpose of the present paper is to provide accurate solutions to a class of one-dimensional hyperbolic heat conduction problems involving non-Fourier effects that can precisely help understand the true response and furthermore can be used effectively for representative benchmark tests and for validating alternate schemes. As a consequence, the present paper purposely describes modeling/analysis formulations via specially tailored hybrid computations for accurately modeling the sharp discontinuities of the propagating thermal wave front. Comparative numerical test models are presented for various hyperbolic heat conduction models involving non-Fourier effects to demonstrate the present formulations.  相似文献   

11.
The lattice Boltzmann method (LBM) combined with the enthalpy method is a very effective method to solve the solid–liquid phase transition problem. However, when the heat flux is very high or the time of the process is in the same order of magnitude as the relaxation time, it is necessary to consider the non-Fourier effect in heat conduction. At this time, whether the LBM-BGK format based on Bhatnagar-Gross-Krook (BGK) approximation is still valid remains to be discussed. In this paper, the hyperbolic lattice Boltzmann method (HLBM) is combined with the enthalpy method to solve the non-Fourier solid–liquid phase change problem. By solving the non-Fourier heat conduction problem and the Fourier solid–liquid phase change problem, the numerical solution is compared with the analytical solution to verify the accuracy of the algorithm. The effect of different relaxation times on the solid–liquid phase transition is analyzed. In addition, the effect of changes in thermal diffusivity due to state changes on the non-Fourier solid–liquid phase transition is discussed.  相似文献   

12.
This study aims to estimate unknown base temperature distribution in different non-Fourier fins. The Cattaneo–Vernotte (CV) heat model is used to predict the heat conduction behavior in these fins. This inverse problem is solved by the function-estimation version of the Adjoint conjugate gradient method (ACGM) based on boundary temperature measurements. The ACGM includes direct, sensitivity, and adjoint problems. For each of these problems, a one-dimensional general formulation of the non-Fourier model for longitudinal fins with arbitrary profile is driven and solved by an implicit finite difference method. In this study, three different profiles are considered: triangular, convex parabolic, and concave parabolic. For each of them, two different base temperature distributions are estimated using an inverse method. Moreover, the effects of sensor positions at the fin tip and a specific place in-between are considered on the base temperature estimation. A close agreement between the exact values and the estimated results is found, confirming the validity and accuracy of the proposed method. The results show that the ACGM is an accurate and stable method to determine the thermal boundary conditions in different non-Fourier fin problems.  相似文献   

13.
抗事故包装箱结构中木材层的非傅立叶热传导   总被引:2,自引:0,他引:2  
刘朝  史光梅 《工业加热》2006,35(2):16-19
建立了抗事故包装箱结构中防火缓冲层材料的一维非傅立叶导热模型,模型考虑了材料的热解作用。通过数值模拟得到了有意义的结果:对一定条件下的薄木板内导热,存在一个发生非傅立叶导热效应的临界边界温度值;给定条件下的临界边界温度值为984K。给出了防火缓冲层材料的选取原则,这对抗事故包装箱结构设计具有一定的指导意义。  相似文献   

14.
Transient energy transport with non-Fourier heat conduction effects in a two-layer structure of dissimilar materials subject to ultra-fast laser heating is studied using the proper interfacial temperature jump condition. The solution obtained is compared with solutions available in literature that use diffusion-type interfacial conditions in conjunction with non-Fourier heat conduction effects. The dual-phase lag heat conduction model is used in this work as it includes both the temporal and spatial non-Fourier effects. It is found that the diffusion-type interfacial temperature jump condition with non-Fourier heat conduction models can lead to discrepancies and erroneous trends in theoretical predictions. Moreover, a comparison between the functional forms of the two solutions obtained utilizing both interfacial conditions shows that implementing the proper interfacial temperature jump condition does not add any complexity to the solution obtained. This study – implementing the proper interfacial temperature jump condition – is further extended to show the strong effects of the thermal contact conductance and the surface layer thickness on the transient thermal response of a two-layer material in a semi-infinite domain subject to ultra-fast laser heating processes in terms of the reflectivity change of the surface layer, the temperature distribution in the two-layer structure as well as the temporal variation of the interfacial temperature difference.  相似文献   

15.
ABSTRACT

Rapid transient heat conduction in multilayer materials under pulsed heating is solved numerically based on a hyperbolic heat conduction equation and taking into consideration the non-Fourier heat conduction effects. An implicit difference scheme is presented and a stability analysis conducted, which shows that the implicit scheme for the hyperbolic equation is stable. The code is validated by comparing the numerical results with an existing exact solution, and the physically unrealistic conditions placed on the time and space increments are identified. Using the validated model, the numerical solution of thermal wave propagation in multilayer materials is presented. By analyzing the results, the necessary conditions for observing non-Fourier phenomena in the laboratory can be inferred. The results are also compared with the numerical results from the parabolic heat conduction equation. The difference between them is clearly apparent, and this comparison provides new insight for the management of thermal issues in high-energy equipment. The results also illustrate the time scale required for metal films to establish equilibrium in energy transport, which makes it possible to determine a priori the time response and the measurement accuracy of metal film, thermal-resistant thermometers.  相似文献   

16.
Ballistic–diffusive heat conduction, which is predominantly affected by boundaries and interfaces, will occur in nanostructures whose characteristic lengths are comparable to the phonon mean free path (MFP). Here, we demonstrated that interactions between phonons and boundaries (or interfaces) could lead to two kinds of slip boundary conditions in the ballistic–diffusive regime: boundary temperature jump and boundary heat flux slip. The phonon Boltzmann transport equation (BTE) with relaxation time approximation and the phonon tracing Monte Carlo (MC) method were used to investigate these two slip boundary conditions for the ballistic–diffusive heat conduction in nanofilms on a substrate. For cross-plane heat conduction where the boundary temperature jump is the dominant non-Fourier phenomenon, ballistic transport causes the temperature jumps and thus introduces a ballistic thermal resistance. Importantly, when considering the interface effect, the corresponding model was derived based on the phonon BTE and verified by comparing with the MC simulations. In addition, an interface–ballistic coupling effect was identified, which indicates inapplicability of the standard thermal resistance analysis. In contrast, for the in-plane case that is controlled by boundary heat flux slip, both phonon boundary scattering and perturbation of the phonon distribution function induced by the interface can cause heat flux slip, leading to a variation in in-plane thermal resistance. In addition, a model beyond the Fuchs-Sondheimer formula, which can address both the boundary scattering and the interface effects, was derived based on the phonon BTE. The good agreements with the MC simulations indicate its validity.  相似文献   

17.
Abstract

In this article, a three-time level finite difference scheme is used to resolve the dual phase lag’s (DPL) heat conduction in a micro scale gold film subjected to spontaneous temperature boundary conditions without knowing the heat flux. Finite difference analog of DPL equation on applying to the intermediate grid points of the computational domain results into a system of linear, algebraic equations which can be solved using Thomas’ algorithm to finally obtain the transient temperature solution distributions in the film. The solution predicted by the DPL model is compared with that obtained by the single-phase Cattaneo–Vernotte’s model. Further, the way in which non-Fourier’s temperature distributions affected by the diffusion due to the increase in Heat Conduction Model numbers agree with the predecessor’s published results. The results by both the models revealed a finite thermal wave speed in the film contrasting the infinite speed of heat propagation as stated by the classical Fourier’s thermal model. Low spatial step and higher order finite difference schemes are recommended for better accurate numerical results of the non-Fourier’s temperature distributions occurring in the very short transient period between the instants of the suddenly applied spatial temperature gradient and the reaching of the steady state conditions.  相似文献   

18.
Abstract

The differential transformation method is combined with the dual reciprocity boundary element method to solve the non-Fourier heat conduction problems in functionally gradient materials. The cuckoo search algorithm is improved by the Broyden–Fletcher–Goldfarb–Shanno algorithm to identify the boundary conditions for the heat conduction problems. The polynomial function related to coordinate and time is proposed to approximate the unknown boundary conditions. Numerical examples discuss the influences of measurement point numbers and measurement errors on inverse solutions. Numerical results demonstrate the effectiveness and accuracy of the proposed method.  相似文献   

19.
A flux-splitting algorithm based on the Godunov numerical scheme developed for the solution of the one-dimensional non-Fourier heat conduction equation by Yeung and Lam [1] is extended for the investigation of thermal wave propagation in rectangular media. The derivation of the solution method and the stability criteria are presented in detail. Physical problems subjected to various boundary conditions (e.g., first, second, and third kinds) can be studied with the numerical scheme. A comparison of the exact solution with the one calculated by the proposed procedure is presented to confirm the validity of the numerical procedure. The numerical scheme is applicable for the study of short-pulse heating in advanced materials, microstructures, thin films, semiconductor devices, and superconductors.  相似文献   

20.
The precise time-domain expanding boundary-element method (BEM) is presented for solving non-Fourier heat conduction problems. The recursive boundary integral equation is obtained via the precise time-domain expanding method and solved by the BEM, where the radial integral method is used to transform the domain integral into the boundary integral. Also, a self-adaptive judging criterion is used in the solving process. The transformation matrices of domain integrals need to be computed only once, except those related to the heat source. Finally, numerical results show that the present method can obtain stable and accurate results with different time steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号