共查询到20条相似文献,搜索用时 14 毫秒
1.
A model for the bed-to-wall heat transfer under low temperature condition in a circulating fluidized bed (CFB) was developed based upon a simplified cluster renewal concept. The age of clusters in contact with the wall at different locations along the height of the CFB was estimated as the weighted average age considering their formation and disintegration. One set of experimental data on heat transfer in a 4.5-metre high, 0.15-metre diameter CFB under low temperature condition (67–77°C) was chosen for comparison with prediction of local heat transfer coefficient. The experimental observation and prediction have shown a qualitative agreement. 相似文献
2.
《International Journal of Heat and Mass Transfer》1987,30(10):2151-2160
A flow visualization technique for studying the gas bubble dynamics in a pressurized fluidized bed was developed and used to quantify these dynamics at the surface of a vertical tube submerged in the bed. Transient heat flux measurements were made and correlated with bubble motion. As a result, it is concluded that the heat transfer process is strongly affected by bubble dynamics and is much more complex than any of the generally accepted models can predict. It is also shown that the overall bed operating conditions are the primary driver for local bubble/particle motion around the tube which significantly affects the time-dependent fluctuation in local heat transfer. 相似文献
3.
Xiaoguang Ren Jiangdong Zheng Sefiane Khellil Arumemi-Ikhide Michael 《Frontiers of Energy and Power Engineering in China》2009,3(1):85-89
In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase)
circulating fluidized bed boiling system has been designed, combining a circulating fluidized bed with boiling heat transfer.
Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within
the riser column are also conducted whose results are presented and discussed. 相似文献
4.
Xiaoguang REN Jiangdong ZHENG Sefiane KHELLIl Arumemi-Ikhide MICHAEL 《Frontiers in Energy》2009,3(1):85
In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boiling system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed. 相似文献
5.
An experimental investigation was carried out to study the effects of operating parameters on the local bed-to-wall heat transfer coefficient in a 4.5 m tall, 0.150 m diameter circulating fluidized bed with a bed temperature in the range of 65°C to 80°C, riser flow rate varying from 1400 litres/min to 2000 litres/min, bed inventory in the range of 15 kg to 25 kg of sand, and average sand sizes of 200 μm, 400 μm and 500 μm. A heat flux probe was attached to the riser wall at five different vertical locations for measuring the heat flux from the bed to the wall surface. From the present work, the heat transfer coefficient in the dilute phase was found to be in the range of 62 to 83 W/m2K, 51 to 74 W/m2K, and 50 to 59 W/m2 K for sand sizes of 200 μm, 400 μm and 500 μm, respectively. Relevant mathematical correlations were developed to predict local heat transfer coefficient based on the results of the practical work. 相似文献
6.
The present work reports the influence of pressure and bed temperature on particle‐to‐wall heat transfer in a pressurized circulating fluidized bed (PCFB). The particle convection heat transfer plays a dominant role in determining the bed‐to‐wall heat transfer coefficient. So far, no information is reported on the effect of pressure and bed temperature on particle‐to‐wall heat transfer in a PCFB in the published literature. The present investigation reports some information in this direction. The effect of system pressure and bed temperature are investigated to study their influence on cluster and particle heat transfer. The particle convection heat transfer coefficient increases with system pressure and bed temperature due to higher cluster thermal conductivity. The increase in particle concentration (suspension density) results in greater cluster solid fraction and also the particle concentration near the wall is enhanced. This results in higher cluster and particle convection heat transfer between the bed and the wall. Higher particle convection heat transfer coefficient results in enhanced heat transfer between the bed and the wall. The results will also help to understand the bed‐to‐wall heat transfer mechanism in a better way in a PCFB. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
The axial and radial variation of the heat transfer coefficient in a circulating fluidized bed riser column, and the effect of operating parameters thereon, are investigated. The experimental set-up consists of a riser column of 102 mm×102 mm in bed cross-section, 5·25 m in height with a return leg of the same dimensions. The unit is fabricated with plexiglass columns of 0·6 m in length which are interchangeable with one another. Two axial heat transfer test sections of 102 mm×102 mm in cross-section, 500 mm in height, and made of mild steel, are employed for the axial heat transfer study and one horizontal tube section of 22·5 mm OD made of mild steel is employed for the radial heat transfer study. The primary air velocity is varied between 4·21 and 7·30 m s−1. Local sand of mean size (dp) 248 μm is used as the bed material. One empirical model with the help of dimensional analysis has been proposed to predict the heat transfer coefficient to a bare horizontal tube in a CFB riser column and the model results are validated with the experimental data; good agreement has been observed. © 1997 John Wiley & Sons, Ltd. 相似文献
8.
Experimental methods of estimating heat transfer in circulating fluidized bed boilers 总被引:2,自引:0,他引:2
Bengt- ke Andersson Bo Leckner 《International Journal of Heat and Mass Transfer》1992,35(12):3353-3362
Four different experimental methods have been used for the estimation of the bed-to-membrane wall heat transfer in a 12 MWth circulating fluidized bed boiler. The methods are compared for a case of normal operating conditions and the measured heat transfer coefficients are presented. In the central part of the combustion chamber where most of the cooling surface is located, the cross-sectional average suspension density normally varies in the range of 10–20 kg m−3 and the heat transfer coefficient is around 130 W m−2 K−1 with a scatter of ±15% due to the different methods. The methods are critically analyzed and the heat transfer data are compared with relevant literature data. 相似文献
9.
Nirmal V. Gnanapragasam Bale V. Reddy 《International Journal of Heat and Mass Transfer》2009,52(7-8):1657-1666
The water-wall surfaces located above the secondary air inlet within the circulating fluidized bed (CFB) combustor are exposed to the axial bed-to-wall heat transfer process. In the current work, the axial bed-to-wall heat transfer coefficients are estimated for three different axial voidage profiles (covering three widely occurring average particle concentrations) in order to investigate the effect of voidage, time, initial and fixed temperature of the bed and annulus, and gas gap between wall and solid particles; on the axial heat transfer process. A 2D thermal energy balance model is developed to estimate the axial heat transfer values for the gas–solid suspension along the height of the riser column with horizontally changing mass distribution. The gas–solid mass distribution is fixed with time thus providing a spectrum of changes in axial bed-to-wall heat transfer profile with time. The current work provides an opportunity to understand the axial heat transfer relationship with particle concentration and instantaneous behaviour. The results from the work show that: (i) first few seconds of the suspension temperature near the wall has maximum energy thus providing a small time frame to transfer more heat to the surface (CFB wall); (ii) both axial and horizontal particle concentrations (influenced by the operating conditions) affect the axial heat transfer locally; (iii) initial temperature of the bed between average and maximum values provide end limits for the axial heat transfer; (iv) annulus region has higher thermal energy than the core due to increased particle presence; and (v) a particle-free zone near the wall (gas gap) having a maximum thickness of 1 mm, tends to reduce up to 25% of axial heat transfer value. The model trends have close agreement with experimental trends from published literature; but the model values differ when correlating with real values due to inconsistencies in riser diameter and nature of variation in parameters. 相似文献
10.
Cheng Leming Wang Qinhui Shi Zhenglun Luo Zhongyang Ni Mingjiang Cen Kefa 《Frontiers of Energy and Power Engineering in China》2007,1(4):477-482
Heat transfer of a furnace in a large-scale circulating fluidized bed (CFB) boiler was studied based on the analysis of available
heat transfer coefficient data from typical industrial CFB boilers and measured data from a 12 MWe, a 50 MWe and a 135 MWe CFB boiler. The heat transfer of heat exchanger surfaces in a furnace, in a steam/water cooled cyclone, in an external heat
exchanger and in the backpass was also reviewed. Empirical correlation of heat transfer coefficient was suggested after calculating
the two key parameters, solids suspension density and furnace temperature. The correlation approach agrees well with the data
from the large-scale CFB boilers.
__________
Translated from Journal of Power Engineering, 2006, 26(3): 305–310 (in Chinese) [译自: 动力工程] 相似文献
11.
M.R. GolrizJ.R. Grace 《International Journal of Heat and Mass Transfer》2002,45(5):1149-1154
It is shown experimentally that the addition of angled deflectors to the fin region of membrane water-wall heat exchanger surfaces in circulating fluidized beds can lead to a significant increase in local and overall suspension-to-wall heat transfer. The experiments were carried out in the 12 MWth circulating fluidized bed (CFB) boiler at Chalmers University. The results are consistent with calculations based on renewal of packets traveling along the fin. 相似文献
12.
An experimental investigation was made to study the effect of some operating parameters on the bed-to-wall heat transfer in a 5.25 m-tall circulating fluidized bed having a 102 mm-square cross-section with a bed temperature varying from 350 to 1173 K, a superficial velocity from 4 to 8 m/s, and a bed inventory from 15 to 40 kg of sand with a mean particle diameter of 309 μm. Two heat flux probes were used at two different locations in the furnace for measuring the heat transfer coefficient. The experimental results were compared with those of other investigators and also with the data predicted from a proposed theoretical model. 相似文献
13.
INTRODUCTIONThemethodhowtodealwiththedomesticandindustrialwasteswithoutfurthercontaminationisoneofthemostimportantenvironmentalissues.Fluidizedbedcombustor(FBC)hasadvantagesofhighcombustionefficiency)lowpollution,convenienceinpreprocessingbeforefedin... 相似文献
14.
This paper reports the variation of suspension density along the riser column and the effect of riser exit geometry on bed hydrodynamics and heat transfer in the upper region of a circulating fluidized bed (CFB) riser column. The experiments are conducted in a CFB riser column which is 102 mm × 102 mm in bed cross‐section (square), 5.25 m height, with a return leg of the same dimension. The unit is made up of interchangeable plexiglass columns. The superficial primary air velocity is varied between 4.2 and 6.4 m/s. The suspension density profile along the riser height is influenced by the exit geometry. With a 90° riser exit geometry, the suspension density profile in the upper region of the CFB riser column increases towards the riser exit. This particular trend has been observed for about 2 m length in the top region of the riser. The change in suspension density profile in the top region influences the variation of heat transfer coefficient. With a 90° riser exit geometry, the suspension density increases towards the riser exit, which in turn increases the heat transfer coefficient. The effect of riser exit geometry on hydrodynamics and heat transfer is significant for about 2 m length in the upper region of the riser column. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
15.
《International Communications in Heat and Mass Transfer》1999,26(4):499-508
Heat Transfer from the wall of a circulating fluidized bed to the fast bed suspension has been investigated for several materials. The range of investigation includes dense and dilute phase fast fluidization and pneumatic transport. The overall heat transfer coefficient was found to be a function mainly of cross-sectional average suspension density. Effects of superficial velocity and solids mass flux were obscured by their interrelationship to the suspension density. Two models from the literature are evaluated using present and published data. 相似文献
16.
J.F. Lu J.S. Zhang G.X. Yue Q. Liu L. Yu X.D. Lin W.J. Li Y. Tang T.Y. Luo R.S. Ge 《亚洲传热研究》2002,31(7):540-550
Knowledge of heat transfer coefficients is important in the design and operation of CFB boilers. It is the key to determining the area and the layout of the heat transfer surfaces in a CFB furnace. Local bulk density has a close relationship to the local heat transfer coefficient. Using a heat flux probe and bulk density sampling probe, the local bed to wall heat transfer coefficient in the furnace of a 75 t/h CFB boiler was measured. According to the experimental results and theoretical analysis of the facts that influence the heat transfer, the heat transfer coefficient calculation method for the CFB furnace was developed. The heat transfer surface configuration, heating condition, and the material density are considered in this method. The calculation method has been used in the design of CFB boilers with a capacity from 130 t/h to 420 t/h. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(7): 540–550, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10056 相似文献
17.
Experiments are conducted to investigate the effect of system pressure, Ca/S ratio and primary air velocity on sulphur capture in a pressurized circulating fluidized bed (PCFB) combustor. The pressure inside the PCFB combustor is varied from 200 to 700 kPa. The Ca/S ratio is varied from 1.6 to 3.0. The primary air velocity ranges from 3 to 7 ms?1. The bed temperature is maintained at 750°C. The sulphur capture increases with system pressure in the present range of experimental investigations. The sulphur capture also increases with Ca/S ratio up to a certain ratio and then shows a decreasing trend for the given operating conditions. A semi‐empirical model is developed for explaining the sulphur capture mechanism in the pressurized circulating fluidized bed combustor under batch combustion conditions. The experimental data are validated with the model predictions and a reasonable agreement has been observed. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
18.
19.
《节能》2017,(12)
某135MW循环流化床机组,锅炉运行中发现排烟温度高,大量烟气余热未充分利用,影响了机组的整体经济效益。采用烟气余热三级换热技术对机组烟气系统进行改造,第一级在引风机出口至脱硫增压风机入口烟道上安装H型鳍片管换热器(FGC1),第二级在第一级的后面安装形式相同的H型鳍片管换热器(FGC2),第三级采用氟塑料换热器(FGC3),布置在脱硫塔出口烟道。烟气余热三级换热技术能够适应由于煤质和气候环境的变化,在保证机组的安全可靠运行条件下,经济效益和环保效益显著。所提出的烟气余热品质提升并逐级利用的三级换热技术是一种创新技术,符合我国节能减排的政策,对于更大型的电厂应用也有良好的示范作用,社会效益显著。 相似文献
20.
Art Yew LooiQi-Ming Mao Martin Rhodes 《International Journal of Heat and Mass Transfer》2002,45(2):255-265
This paper reports on an experimental study of the influence of operating pressure, in the range 150-1100 kPa, on wall-to-bed heat transfer coefficient in a bubbling fluidized bed. Both Geldart Group A and B solids were studied and the fluidizing gases were air and superheated steam. Fluidizing velocities were in the range 1-33 Umf and wall temperatures in the range 125-275°C. Wall-to-bed heat transfer coefficients were found to increase steadily with increasing fluidizing gas velocity and not to pass through a maximum. Increase in operating pressure was found generally to result in an increase in wall-to-bed heat transfer coefficient, although the effect is probably non-linear. In the bubbling regime, the wall-to-bed heat transfer coefficient was found to change with vertical position in the bed. Wall-to-bed heat transfer coefficients decreased when the bed entered the slugging regime. 相似文献