首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with an inverse problem, which consists of the identification of point heat sources in a homogeneous solid in transient heat conduction. The location and strength of the line heat sources are both unknown. For a single source we examine the case of a source which moves in the system during the experiment. The two-dimensional and three-dimensional linear heat conduction problems are considered here. The identification procedure is based on a boundary integral formulation using transient fundamental solutions. The discretized problem is non-linear if the location of the line heat sources is unknown. In order to solve the problem we use an iterative procedure to minimize a quadratic norm. The proposed numerical approach is applied to experimental 2D examples using measurements provided by an infrared scanner for surface temperatures and heat fluxes. A numerical example is presented for the 3D application.  相似文献   

2.
This paper deals with an inverse problem that consists of the identification of multiple line heat sources placed in a homogeneous domain. In the inverse problem under investigation the location and strength of the line heat sources are unknown. The estimation procedure is based on the boundary element method. As the discrete problem is non-linear if the location of the line heat sources is unknown, an iterative procedure has to be applied to find out the location of the sources. The proposed approach has been tested for steady and transient experiments. In the present study we propose an original approach to solve the steady problem. As in the steady heat conduction case we have a limited number of unknown for each source, a “parameter estimation” approach can be applied to estimate the sources. Using the techniques of parameter estimation, we can also estimate the confidence interval of the estimated locations, which permits to design an optimal experiment. We intend to present some numerical and experimental 2D results.  相似文献   

3.
This article deals with an inverse problem, which consists of the location and strength identification of multiple-point heat sources in transient heat conduction. The identification procedure is based on a boundary integral formulation using space and time Green functions. The discretized problem is nonlinear if the location of the point heat sources is unknown. In order to reduce the sensitivity of the solution to errors, we use the future time step procedure associated to a Tikhonov regularization procedure. The proposed numerical approach is applied to numerical two- and three-dimensional examples.  相似文献   

4.
An approach using an experimentally built low order model is proposed for the estimation of time-varying heat sources. In a first step, a low order dynamical system of equations, linking up temperatures at a set of specific points to heat sources strengths, is identified from experimental data using the Modal Identification Method. In a second step, the low order model is used to efficiently solve the transient inverse problem for the estimation of heat sources intensities from temperature measurements. The proposed approach is illustrated with an experimental set-up involving thermal diffusion with convective and radiative boundary conditions.  相似文献   

5.
In this paper, we solve two types of inverse heat source problems: one recovers an unknown space-dependent heat source without using initial value, and another recovers both the unknown space-dependent heat source and the initial value. Upon inserting the adjoint Trefftz test functions into Green’s second identity, we can retrieve the unknown space-dependent heat source by an expansion method whose expansion coefficients are derived in closed form. We assess the stability of the closed-form expansion coefficients method by using the condition numbers of coefficients matrices. Then, numerical examples are performed, which demonstrates that the closed-form expansion coefficient method is effective and stable even when it imposes a large noise on the final time data. Next, we develop a coupled iterative scheme to recover the unknown heat source and initial value simultaneously, under two over specified temperature data at two different times. A simple regularization technique is derived to overcome the highly ill-posed behavior of the second inverse problem, of which the convergence rate and stability are examined. This results in quite accurate numerical results against large noise.  相似文献   

6.
The inverse problem endowing with multiple unknown functions gradually becomes an important topic in the field of numerical heat transfer, and one fundamental problem is how to use limited minimal data to solve the inverse problem. With this in mind, in the present article we search the solution of a general inverse heat conduction problem when two boundary data on the space-time boundary are missing and recover two unknown temperature functions with the help of a few extra measurements of temperature data polluted by random noise. This twofold ill-posed inverse heat conduction problem is more difficult than the backward heat conduction problem and the sideways heat conduction problem, both with one unknown function to be recovered. Based on a stable adjoint Trefftz method, we develop a global boundary integral equation method, which together with the compatibility conditions and some measured data can be used to retrieve two unknown temperature functions. Several numerical examples demonstrate that the present method is effective and stable, even for those of strongly ill-posed ones under quite large noises.  相似文献   

7.
Based on the analytical solution of the unsteady heat conduction differential equation, a solution procedure is presented for the inverse unsteady wall heat conduction problem, i.e. for the calculation of the thermal properties of structural elements of existing buildings under real transient conditions, using on-site temperature measurements. Previous procedures, which were based on the finite-difference method, required a considerable number of temperature measurements in space and time within the wall. The advantage of the present analytical procedure is that it requires only two temperature measurements, apart from some information on the outdoor and indoor temperature variations. The two temperature measurements may be taken on the outdoor and indoor wall surfaces at the same time level, or on one of these surfaces at two different time levels. The proposed analytical procedure provides the values of the thermal conductivity and heat capacity of structural elements, and therefore it may be used in practice for ex post checking of the materials used by the constructor, or for load calculation when heating or cooling systems are to be installed in old buildings of unknown wall properties. Experimental examples are presented which show that the proposed analytical procedure may be applied in practice with very good accuracy.  相似文献   

8.
The paper deals with the inverse determination of heat sources in steady 2-D heat conduction problem. The problem is described by Poisson equation in which the function of the right hand side is unknown. The identification of the strength of a heat source is given by using the boundary condition and a known value of temperature in chosen points placed inside the domain. For the solution of the inverse problem of identification of the heat source the method of fundamental solution with radial basis functions is proposed. The accurate results have been obtained for five test problems where the analytical solutions were available.  相似文献   

9.
In this paper, we introduce analytical solutions for transient heat conduction in an infinite solid mass subjected to a varying single or multiple cylindrical heat sources. The solutions are formulated for two types of boundary conditions: a time-dependent Neumann boundary condition, and a time-dependent Dirichlet boundary condition. We solve the initial and boundary value problem for a single heat source using the modified Bessel function, for the spatial domain, and the fast Fourier transform, for the temporal domain. For multiple heat sources, we apply directly the superposition principle for the Neumann boundary condition, but for the Dirichlet boundary condition, we conduct an analytical coupling, which allows for the exact thermal interaction between all involved heat sources. The heat sources can exhibit different time-dependent signals, and can have any distribution in space. The solutions are verified against the analytical solution given by Carslaw and Jaeger for a constant Neumann boundary condition, and the finite element solution for both types of boundary conditions. Compared to these two solutions, the proposed solutions are exact at all radial distances, highly elegant, robust and easy to implement.  相似文献   

10.
As to recover a time-dependent heat source under an extra temperature measured at an interior point, we can reformulate it to be a three-point boundary value problem. We can develop a coupled boundary integral equation method, wherein by selecting two sets of adjoint test eigenfunctions in two sub domains and using polynomials as the trial functions of unknown heat source, the time-dependent heat source is recovered very well and quickly. Four numerical examples, including a discontinuous one, demonstrate the efficiency for the ill-posed inverse heat source problem in a large time duration and under a large noise up to 10–30%. Then, selecting three sets of adjoint test eigenfunctions in three domains: problem domain and two sub domains, and using the Pascal polynomials as trial functions, the unknown space-time-dependent heat source is recovered very fast and accurately from the solution of three coupled boundary integral equations.  相似文献   

11.
Using Bayesian statistics in the estimation of heat source in radiation   总被引:2,自引:0,他引:2  
An unknown transient heat source in a three-dimensional participating medium is reconstructed from temperature measurements using a Bayesian inference method. The heat source is modeled as a stochastic process. The joint posterior probability density function (PPDF) of heat source values at consecutive time points is computed using the Bayes’ formula. The errors in thermocouple readings are modeled as independent identically distributed (i.i.d.) Gauss random variables. ‘Maximum A Posteriori’ (MAP) and posterior mean estimates of the heat source are then computed using a Markov chain Monte Carlo (MCMC) simulation method. The designed MCMC sampler is composed of a cycle of symmetric MCMC kernels. To increase the sampling speed, a model-reduction technique is used in the direct computation of temperatures at thermocouple locations given a guessed heat source, i.e. in the likelihood computation. Two typical heat source profiles are reconstructed using simulated data to demonstrate the presented methodologies. The results indicate that the Bayesian inference method can provide accurate point estimates as well as uncertainty quantification to the solution of the inverse radiation problem.  相似文献   

12.
Tungsten inert Gas (TIG) welding takes place in an atmosphere of inert gas and uses a tungsten electrode. In this process heat input identification is a complex task and represents an important role in the optimization of the welding process. The technique used to estimate the heat flux is based on solution of an inverse three-dimensional transient heat conduction model with moving heat sources. The thermal fields at any region of the plate or at any instant are determined from the estimation of the heat rate delivered to the workpiece. The direct problem is solved by an implicit finite difference method. The system of linear algebraic equations is solved by Successive Over Relaxation method (SOR) and the inverse problem is solved using the Golden Section technique. The golden section technique minimizes an error square function based on the difference of theoretical and experimental temperature. The temperature measurements are obtained using thermocouples at accessible regions of the workpiece surface while the theoretical temperatures are calculated from the 3D transient thermal model.  相似文献   

13.
A new radial integration boundary element method (RIBEM) for solving transient heat conduction problems with heat sources and variable thermal conductivity is presented in this article. The Green’s function for the Laplace equation is served as the fundamental solution to derive the boundary-domain integral equation. The transient terms are first discretized before applying the weighted residual technique that is different from the previous RIBEM for solving a transient heat conduction problem. Due to the strategy for dealing with the transient terms, temperature, rather than transient terms, is approximated by the radial basis function; this leads to similar mathematical formulations as those in RIBEM for steady heat conduction problems. Therefore, the present method is very easy to code and be implemented, and the strategy enables the assembling process of system equations to be very simple. Another advantage of the new RIBEM is that only 1D boundary line integrals are involved in both 2D and 3D problems. To the best of the authors’ knowledge, it is the first time to completely transform domain integrals to boundary line integrals for a 3D problem. Several 2D and 3D numerical examples are provided to show the effectiveness, accuracy, and potential of the present RIBEM.  相似文献   

14.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent base heat flux of an annular fin from the knowledge of temperature measurements taken within the fin. The inverse solutions will be justified based on the numerical experiments in which two specific cases to determine the unknown base heat flux are examined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux can be obtained for the test cases considered in this study.  相似文献   

15.
The two-dimensional inverse problem of estimating the unknown heat flux of a pin fin base has been solved using the conjugate gradient method. The advantage of the conjugate gradient method is that no information on the functional form of the unknown quantity is required beforehand. The accuracy of the inverse analysis is examined by using simulated exact and inexact measurements of temperature in an interior location of a pin fin. Numerical results show that good estimations on the heat flux can be obtained for all the test cases considered here. Furthermore, such a technique can be applied to determine the heat flux acting on an internal wall surface, where direct measurements are difficult to make.  相似文献   

16.
《热应力杂志》2012,35(1):55-71
Abstract

Modeling and understanding heat transport and temperature variations within biological tissues and body organs are key issues in medical thermal therapeutic applications, such as hyperthermia cancer treatment. In the present analysis, the bioheat equation is studied in the context of memory responses. The heat transport equation for this problem involving the memory-dependent derivative (MDD) on a slipping interval in the context of three-phase (3P) lag model under two-temperature theory is formulated and is then used to study the thermal damage within the skin tissue during the thermal therapy. Laplace transform technique is implemented to solve the governing equations. The influences of the MDD and moving heat source velocity on the temperature of skin tissues are precisely investigated. The numerical inversion of the Laplace transform is carried out using Zakian method. The numerical outcomes of temperatures are represented graphically. Excellent predictive capability is demonstrated for identification of an appropriate procedure to select different kernel functions to reach effective heating in hyperthermia treatment. Significant effect of thermal therapy is reported due to the effect of delay time and the velocity of moving heat source as well.  相似文献   

17.
18.
A new high-precision boundary meshfree method, namely virtual boundary meshfree Galerkin method (VBMGM), for calculating the multi-domain constant coefficient heat conduction with a heat source problem is given. In the paper, the radial basis function interpolation is used to solve the virtual source function of virtual boundary and the heat source within each subdomain. Simultaneously, the equation of VBMGM for multi-domain constant coefficient heat conduction with a heat source problem is obtained by the Galerkin method. Therefore, the proposed method has common advantages of the boundary element method, meshfree method, and Galerkin method. Coefficient matrix of this specific expression is symmetrical and the specific expression of VBMGM for the multi-domain constant coefficient heat conduction with a heat source problem is given. Two numerical examples are given. The numerical results are also compared with other numerical methods. The accuracy and feasibility of the method for the multi-domain constant coefficient heat conduction with a heat source problem are proved.  相似文献   

19.
In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse heat conduction problem with a dual-phase-lag equation for estimating the unknown space- and time-dependent laser-induced heat generation in a gas-saturated porous medium exposed to short-pulse laser heating from the temperature measurements taken within the medium. Subsequently, the powder particle temperature distributions in the porous medium can be determined as well. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The effect of measurement errors on the estimation accuracy is also investigated. The inverse solutions are justified based on the numerical experiments in which two different forms of heat generation are estimated. Results show that the unknown laser-induced heat generation can be predicted precisely by using the present approach for the test cases considered in this study.  相似文献   

20.
The paper deals with the non-iterative inverse determination of the temperature-dependent thermal conductivity in 2-D steady-state heat conduction problem. The thermal conductivity is modeled as a polynomial function of temperature with the unknown coefficients. The identification of the thermal conductivity is obtained by using the boundary data and additionally from the knowledge of temperature inside the domain. The method of fundamental solutions is used to solve the 2-D heat conduction problem. The golden section search is used to find the optimal place for pseudo-boundary on which are placed the singularities in the frame of method of fundamental solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号