首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anisotropic thermal conductivities and permeabilities are investigated for discs and plates of compacted expanded natural graphite. The measuring directions of heat conductivity and permeability are both parallel and perpendicular to the pressing direction of compacted samples. An unexpected phenomenon is found in that the thermal conductivity sometimes decreases as the density of the material increases, and this phenomenon only occurs for thermal conduction parallel to the compressing direction. The results also indicate that the direction perpendicular to the compression direction shows higher thermal conductive properties and permeability values. Both anisotropic thermal conductivities and permeabilities are strongly dependent on density. Analysis shows that as a type of porous material, the ENG yields layers under the effect of pressure, and their orientation influences the values of heat conductivity and permeability of the different samples.  相似文献   

2.
The porous microstructure of wood samples on their sections perpendicular to the fibres were analyzed using the scanning electron microscope images. The fractal dimensions of these images were calculated using the box-counting method, respectively. They are all approximately equal to 1.4, although the distribution and the scale of wood fibres are extremely different. Then, a fractal model for predicting the effective thermal conductivities of wood was established using the thermal resistance method. In addition, we measured the effective thermal conductivity of wood via an improved transient plane source measurement method. The calculated results by the proposed model are in good agreement with the experimental data as well as the literature data. The comparison shows clearly that this fractal model can be used to accurately and effectively predict the effective thermal conductivities perpendicular to the fibres of wood.  相似文献   

3.
The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with different densities were measured within the phase-change temperature range. The relationships between effective thermal conductivity, density and temperature were analysed. The effective thermal conductivity reached peak values within the phase-change temperature range and the temperature peak value was consistent with the peak value of the phase-change temperature. The effective thermal conductivity increased with increasing density due to the decreased porosity of samples and their increased solid-phase conduction.  相似文献   

4.
The effective thermal conductivity of tin powder filled high density polyethylene composites is investigated experimentally as a function of filler concentration and the measured values are compared with the existing theoretical and empirical models. Samples are prepared by compression molding process, up to 16% volumetric concentration of tin particles. The thermal conductivity is measured by a modified hot wire technique in a temperature range from about 0°C to 70°C. Experimental results show a region of low particle content, up to about 10% volume concentration, where the increase in thermal conductivity is rather slow. The filler particles are dispersed in the matrix material in this region, the thermal conductivity is best predicted by Maxwell's model and Nielsen's model with A=1.5, φm=0.637. Whereas, at high filler concentrations, the filler particles tend to form agglomerates and conductive chains in the direction of heat flow resulting in a rapid increase in thermal conductivity. A model developed by Agari and Uno estimates the thermal conductivity in this region, using two experimentally determined constants.  相似文献   

5.
This paper describes the thermal and hydrogenation properties of a metal hydride (MH) sheet consisting of MH powder, aramid pulp, and carbon fiber. MH sheets were prepared by the wet paper method in which an agglutinated slurry of raw materials was dispersed onto a stainless steel mesh in water and then the sheet was dehydrated and dried. The cyclic characteristics and thermal conductivities of the MH sheets were experimentally investigated. The effects of changing the carbon fiber ratio and the measurement direction on the effective thermal conductivity were measured by the steady heat flow method. The thermal conductivity increased to 3.20 W/m·K with increasing carbon fiber ratio only in the planar direction. The decreases in mass due to removing MH powder and/or carbon fiber from sheet were less than 1 mass% after around 100 hydrogen absorption/desorption cycles. Moreover, the MH sheet was effective at decreasing the stress on the reactor vessel due to the expansion of MH during hydrogen absorption/desorption.  相似文献   

6.
This paper presents a theoretical and experimental study on thermal conductivities of silica aerogel, xonotlite-type calcium silicate and xonotlite–aerogel composite insulation material. The transmittance spectra of silica aerogel and xonotlite-type calcium silicate samples are obtained through FTIR measurements. The corresponding extinction coefficient spectra of the three materials are then obtained by applying Beer’s law. The thermal conductivities of aerogel, xonotlite-type calcium silicate, and xonotlite–aerogel composite insulation material are measured from 300 to 970 K and from 0.045 Pa to atmospheric pressure with the transient hot-strip (THS) method. The thermal conductivity models developed for coupled heat transfer of gas and solid based on the unit cell method are compared with the experimental measurement results. It is shown that the effective thermal conductivity models matches well with the experimental data. The specific spectral extinction coefficients of xonotlite-type calcium are larger than 10 m2 kg?1, and the specific spectral extinction coefficients of aerogel are larger than 7 m2 kg?1 over the whole measured spectra. The density of xonotlite-type calcium silicate is the key factor affecting the effective thermal conductivity of xonotlite–aerogel composite insulation material, and the density of aerogel has little influence. The effective thermal conductivity can be lowered greatly by composite of the two materials at an elevated temperature.  相似文献   

7.
The pyrolysis rate limiting heat transfer properties of charcoal from large wood particles are studied by comparing experiments and simulations of transient heat conduction in large charcoal samples. The interior temperatures in cylindrical charcoal samples of 20±2 mm radius were measured during heating from room temperature to 700°C in an inert atmosphere. Simulations are performed for two cases of constant material properties and for two cases of temperature dependent specific heat and/or effective thermal conductivity. The material properties of charcoal used in the simulations are found in literature related to modelling of wood pyrolysis. The simulations show that a constant thermal diffusivity of approximately 0.7 mm2/s agrees better with measured data than the assumption of temperature dependent material properties. Constant material properties are preferred due to simplicity, although the correct interpretation is that the increase in specific heat and effective thermal conductivity with temperature cancel each other.  相似文献   

8.
Study of thermal characteristics of a lithium-ion battery plays a vital role in determining and enhancing the performance and safety of the battery. This paper predicts the effective thermal conductivity of a graphite anode having microstructure reconstructed by an ellipsoid based simulated annealing method. A lattice-Boltzmann (LB) model is established for simulating the thermal diffusion process in the computer-generated 3D microstructure of graphite anode. The effective thermal conductivities derived from LB simulation results indicate evident anisotropic feature of the graphite anode. The numerical results show that the particle size does have some effects on the effective thermal conductivity, but the effects are generally not significant. The real graphite may have particles with particle size following a certain statistical distribution, very probably the normal distribution, which is found to weaken the anisotropy of the electrode. Comparing the numerical data with the theoretical predictions by effective media theory (EMT) suggests that the suitable value of the empirical correction factor (f) for the effective thermal conductivity of graphite anode in the electrode through-plane direction is about 6.0 and in the other direction about 4.5.  相似文献   

9.
Clothing materials may be considered composite materials composed of fiber, air, and moisture. For this paper, effective thermal conductivities of wet clothing materials were analyzed numerically using a proposed heat transfer model. The following simplifications were introduced. The clothing material fiber is woven with a single yarn, there is no air movement between fibers, and mass transfer is neglected. Numerical calculations were made using finite difference equations for steady three-dimensional heat conduction for several composite materials representing wet clothing materials. The main results obtained were as follows. The effective thermal conductivity of wet clothing material increases as the thermal conductivity of the yarn and the moisture content increase. We found that our numerical results agree qualitatively with those previously measured. The effective thermal conductivity of a wet layered material depends on the distribution of moisture and attains a maximum in the wet layer. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(3): 243–254, 1998  相似文献   

10.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

11.
The effective thermal conductivity of two varieties of Triticum durum wheat and a wheat product, bulgur, is determined at different moisture contents and at ambient temperature by the transient line heat source method. The moisture contents of the samples ranged from 9.17 to 38.65 percent wet basis and the bulk densities ranged from 675 to 827 kg/m3. Under those conditions, the measured effective thermal conductivities ranged from 0.159 to 0.201 W/m.K. The effective thermal conductivity is found to be linearly increasing with moisture content. The results are also in good agreement with literature values.  相似文献   

12.
Six novel polymer-based form-stable composite phase change materials (PCMs), which comprise micro-encapsulated paraffin (MEP) as latent heat storage medium and high-density polyethylene (HDPE)/wood flour compound as supporting material, were prepared by blending and compression molding method for potential latent heat thermal energy storage (LHTES) applications. Micro-mist graphite (MMG) was added to improve thermal conductivities. The scanning electron microscope (SEM) images revealed that the form-stable PCMs have homogeneous constitution and most of MEP particles in them were undamaged. Both the shell of MEP and the matrix prevent molten paraffin from leakage. Therefore, the composite PCMs are described as form-stable PCMs. The differential scanning calorimeter (DSC) results showed that the melting and freezing temperatures as well as latent heats of the prepared form-stable PCMs are suitable for potential LHTES applications. Thermal cycling test indicated the form-stable PCMs have good thermal stability although it was subjected to 100 melt–freeze cycles. The thermal conductivity of the form-stable PCM was increased by 17.7% by adding 8.8 wt% MMG. The results of mechanical property test indicated that the addition of MMG has no negative influence on the mechanical properties of form-stable composite PCMs. Taking one with another, these novel form-stable PCMs have the potential for LHTES applications in terms of their proper phase change temperatures, improved thermal conductivities, outstanding leak tightness of molten paraffin and good mechanical properties.  相似文献   

13.
Monolithic catalysts have received increasing attention for application in the small-scale steam methane reforming process. The radial heat transfer behaviors of monolith reformers were analyzed by two-dimensional computational fluid dynamic (CFD) modeling. A parameter study was conducted by a large number of simulations focusing on the thermal conductivity of the monolith substrate, washcoat layer, wall gap, radiation heat transfer and the geometric parameters (cell density, porosity and diameter of monolith). The effective radial thermal conductivity of the monolith structure, kr,eff, showed good agreement with predictions made by the pseudo-continuous symmetric model. This influence of the radiation heat transfer is low for highly conductive monoliths. A simplified model has been developed to evaluate the importance of radiation for monolithic reformers under different conditions. A wall gap as thin as 0.05 mm significantly decreased kr,eff, while the radiation heat transfer showed limited improvement. A pseudo-homogenous two-dimensional model combined with the symmetric model has been developed for a quick evaluation of geometric parameters for a monolith reformers. Monolithic reformers based on highly conductive substrates e.g., Ni and SiC showed great potential for small-scale hydrogen production.  相似文献   

14.
The reliable thermal conductivity of lithium-ion battery is significant for the accurate prediction of battery thermal characteristics during the charging/discharging process. Both isotropic and anisotropic thermal conductivities are commonly employed while exploring battery thermal characteristics. However, the study on the difference between the use of two thermal conductivities is relatively scarce. In this study, the isotropic and anisotropic thermal conductivities of the four commercially available lithium-ion batteries, ie, LiCoO2, LiMn2O4, LiFePO4, and Li (NiCoMn)O2, were reviewed and evaluated numerically through the heat conduction characteristics inside the battery. The results showed that there are significant differences in the temperature distribution in the battery caused by the isotropic and anisotropic thermal conductivities, which could affect the layout and cooling effectiveness of battery thermal management system. Furthermore, the effective thermal conductivities of porous electrodes and separator were determined to establish thermal conductivity bounds of lithium-ion batteries combined with the thicknesses of battery components. The thermal conductivity bounds could be applied to evaluate the rationality of the thermal conductivity data used in battery thermal models.  相似文献   

15.
The objective of this study is to develop an artificial neural network (ANN) model to predict the thermal conductivity of ethylene glycol–water solutions based on experimentally measured variables. The thermal conductivity of solutions at different concentrations and various temperatures was measured using the cylindrical cell method that physical properties of the solution are being determined fills the annular space between two concentric cylinders. During the experiment, heat flows in the radial direction outwards through the test liquid filled in the annual gap to cooling water. In the steady state, conduction inside the cell was described by the Fourier equation in cylindrical coordinates, with boundary conditions corresponding to heat transfer between the solution and cooling water. The performance of ANN was evaluated by a regression analysis between the predicted and the experimental values. The ANN predictions yield R2 in the range of 0.9999 and MAPE in the range of 0.7984% for the test data set. The regression analysis indicated that the ANN model can successfully be used for the prediction of the thermal conductivity of ethylene glycol–water solutions with a high degree of accuracy.  相似文献   

16.
Latent heat storage (LHS) can theoretically provide large heat storage density and significantly reduce the storage material volume by using the material’s fusion heat, Δhm. Phase change materials (PCMs) commonly suffer from low thermal conductivities, being around 0.4 W m−1 K−1 for inorganic salts, which prolong the charging and discharging period. The problem of low thermal conductivity is a major issue that needs to be addressed for high temperature thermal energy storage systems. Since porous materials have high thermal conductivities and high surface areas, they can be used to form composites with PCMs to significantly enhance heat transfer. In this paper, the feasibility of using metal foams and expanded graphite to enhance the heat transfer capability of PCMs in high temperature thermal energy storage systems is investigated. The results show that heat transfer can be significantly enhanced by both metal foams and expanded graphite, thereby reducing the charging and discharging period. Furthermore, the overall performance of metal foams is superior to that of expanded graphite.  相似文献   

17.
In this study, a series of computational fluid dynamics (CFD) numerical analyses was performed in order to evaluate the performance of six full‐scale closed‐loop vertical ground heat exchangers constructed in a test bed located in Wonju, South Korea. The high‐density polyethylene pipe, borehole grouting and surrounding ground formation were modeled using FLUENT, a finite‐volume method program, for analyzing the heat transfer process of the system. Two user‐defined functions accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The numerical simulations provide verification for the in‐situ thermal response test (TRT) results. The numerical analysis with the ground thermal conductivity of 4.0 W/m?K yielded by the back‐analysis was in better agreement with the in‐situ TRT result than with the ground thermal conductivity of 3.0 W/m?K. From the results of CFD back‐analyses, the effective thermal conductivities estimated from both the in‐situ TRT and numerical analysis are smaller than the ground thermal conductivity (=4.0 W/m?K) that is input in the numerical model because of the intrinsic limitation of the line source model that simplifies a borehole assemblage as an infinitely long line source in the homogeneous material. However, the discrepancy between the ground thermal conductivity and the effective thermal conductivity from the in‐situ TRT decreases when borehole resistance decreases with a new three pipe‐type heat exchanger leads to less thermal interference between the inlet and outlet pipes than the conventional U‐loop type heat exchanger. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The development of ceramic-ceramic composite nuclear fuels benefits from thermal modeling by providing an understanding on how fabrication variables, such as phase fractions, densities, and geometry, will determine effective thermal conductivity. Finite element method (FEM) two and three dimensional programs were used to predict the thermal conductivity of composite UO2-BeO materials. The FEM modeling results were compared to the measured UO2-BeO fuel sample thermal conductivities. The comparison showed that the thermal modeling was in good agreement with the measured values. These benchmarking cases with the FEM thermal modeling method successfully demonstrated the potential of the models to accurately predict the effective thermal conductivity of an enhanced thermal conductivity oxide nuclear fuel. The FEM thermal modeling was used to predict UO2-BeO nuclear fuel thermal conductivities with different BeO percentages, and then the reactor fuel thermal behavior was analyzed using the UO2-BeO nuclear fuel thermal conductivities and other material properties. The analysis results show significant temperature decrease for the UO2-BeO nuclear fuel compared to the traditional UO2 fuel, and then the safety of the reactor would be improved.  相似文献   

19.
The heat transfer and pressure drop characteristics of sandwiched metallic honeycomb structures, with one face-sheet heated by constant heat flux and cooled by forced air convection, have been investigated both experimentally and numerically. Six test samples, made of two materials with different thermal conductivities (16.2 W/(mK) for stainless steel and 401 W/(mK) for pure copper), were evaluated. The effect of cell shapes was also explored using samples with square, diamond, trapezoidal and hexagonal shapes. Good agreements between experimental and numerical results were obtained for both the friction factor (pressure drop) and heat transfer rate. The results show that the overall pressure drop is correlated with surface area density and cell shape, whereas the overall heat transfer rate is a function of surface area density, cell shape, the ratio t/H, and the thermal conductivity of the solid material. Comparisons with other heat sink media have also been made. They indicate that the metallic honeycomb structures investigated are excellent candidates for heat sink applications.  相似文献   

20.
The commercial success of sorption refrigeration and heat pump systems depends on a good heat and mass transfer in the adsorbent bed, which allows higher coefficients of performance and greater specific heating or cooling power that reduce capital costs. In this study the thermal conductivity and thermal contact resistance of vibrated and compressed granular active carbon and binary mixtures of active carbon are investigated using two types of conductivity measurements: a steady-state measurement between flat plates and a transient hot tube measurement. With these results is possible to draw conclusions on how the wall geometry, particle size distribution, and bulk density affect the overall thermal performance. Results show that using binary mixtures of grains and powder gives results superior to those of either grains or powder alone. The conductivity of the binary mixtures increases roughly linearly with bulk density and the 2/3 grain mixture achieves the highest densities. The method used to achieve compaction (vibration or compression) did not seem to affect the result. Thermal contact resistances reduce with increasing density but do vary with the mixture ratio, also appearing to be best with a 2/3 grain–1/3 powder mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号